Musical Rhythm Embedded in the Brain: Bridging Music, Neuroscience, and Empirical Aesthetics



Entrainment to music seems ubiquitous in human cultures. The impact of musical features on individuals has already been explored extensively in music theory, anthropology and psychology. In contrast, it is a relatively new field in neuroscience. Recently, a wave of neuroscience research has grown up exploring the interaction with music in both human and non-human brains, and in evolutionary terms. This chapter briefly reviews some of the biological evidence of music processing, particularly focusing on how the human brain interacts with musical rhythm. The neural entrainment to musical rhythm is proposed as a model particularly well-suited to address objectively, within an experimental set up, how biological rules shape music perception within a limited range of complexity. However, these limits are not fixed. Other aspects such as familiarity, culture, training and context continuously shape brain responses to rhythms and to music in general. Taken together, these studies propose answers to the question of how natural and cultural constraints shape each other, building a vivid motor of aesthetic evolution.


Music cognition Musical rhythm perception Neuroimaging Empirical aesthetics Art and science 



The author is supported by the Australian Research Council (DE160101064).


  1. Arom, S. (2000). Prolegomena to a biomusicology. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 27–29). Cambridge, MA: MIT Press.Google Scholar
  2. Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton.Google Scholar
  3. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.CrossRefGoogle Scholar
  4. Bruner, G. C. (1990). Music, mood, and marketing. Journal of Marketing, 54(4), 94–104.CrossRefGoogle Scholar
  5. Chemin, B., Mouraux, A., & Nozaradan, S. (2014). Body movement shapes selectively the neural representation of musical rhythms. Psychological Science, 25(12), 2147–2159.CrossRefGoogle Scholar
  6. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844–2854.CrossRefGoogle Scholar
  7. Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100, 173–215.CrossRefGoogle Scholar
  8. Grahn, J. A. (2012). Neural mechanisms of rhythm perception: Current findings and future perspectives. Topics in Cognitive Science, 4(4), 585–606.CrossRefGoogle Scholar
  9. Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.CrossRefGoogle Scholar
  10. Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14, 21–51.CrossRefGoogle Scholar
  11. Hannon, E. E., & Johnson, S. P. (2005). Infants use meter to categorize rhythms and melodies: Implications for musical structure learning. Cognitive Psychology, 50(4), 354–377.CrossRefGoogle Scholar
  12. Hannon, E. E., & Trehub, S. E. (2005). Metrical categories in infancy and adulthood. Psychological Science, 16(1), 48–55.CrossRefGoogle Scholar
  13. Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949–961.CrossRefGoogle Scholar
  14. Iyer, V. (2002). Embodied mind, situated cognition, and expressive microtiming in African-American music. Music Perception, 19(3), 387–414.CrossRefGoogle Scholar
  15. Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology General, 141(1), 54–75.CrossRefGoogle Scholar
  16. Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314.CrossRefGoogle Scholar
  17. Langer, S. (1942). Philosophy in a new key. Cambridge, MA: Harvard University Press.Google Scholar
  18. Leman, M. (2008). Embodied music and mediation technology. Cambridge, MA: MIT Press.Google Scholar
  19. London, J. (2004). Hearing in time: Psychological aspects of musical meter. London: Oxford University Press.CrossRefGoogle Scholar
  20. McDermott, J. H. (2012). Auditory preferences and aesthetics: Music, voices, and everyday sounds. In R. Sharot & T. Dolan (Eds.), Neuroscience of preference and choice (pp. 227–256). San Diego: Academic Press.CrossRefGoogle Scholar
  21. Merchant, H., & Honing, H. (2014). Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 17(7), 274.Google Scholar
  22. Nelson, K. (1985). The art of reciting the Qur’an. Austin: University of Texas Press.Google Scholar
  23. North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70, 255–272.CrossRefGoogle Scholar
  24. North, A. C., Shilcock, A., & Hargreaves, D. J. (2003). The effect of musical style on restaurant customers’ spending. Environment and Behavior, 35, 712–718.CrossRefGoogle Scholar
  25. Nozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transaction B, 369(1658), 20130393.CrossRefGoogle Scholar
  26. Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612. doi: 10.1038/srep20612.CrossRefGoogle Scholar
  27. Nozaradan, S., Peretz, I., Missal, M., & Mouraux, M. (2011). Tagging the neuronal entrainment to beat and meter. The Journal of Neuroscience, 31, 10234–10240.CrossRefGoogle Scholar
  28. Nozaradan, S., Peretz, I., & Mouraux, A. (2012a). Selective neuronal entrainment to beat and meter embedded in a musical rhythm. The Journal of Neuroscience, 32, 17572–17581.CrossRefGoogle Scholar
  29. Nozaradan, S., Peretz, I., & Mouraux, A. (2012b). Steady-state evoked potentials as an index of multisensory temporal binding. NeuroImage, 60, 21–28.CrossRefGoogle Scholar
  30. Nozaradan, S., Zerouali, Y., Peretz, I., & Mouraux, A. (2015). Capturing with EEG the neuronal entrainment and coupling underlying sensorimotor integration while moving to the beat. Cerebral Cortex, 25(3), 736–747.CrossRefGoogle Scholar
  31. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York: Oxford University Press.CrossRefGoogle Scholar
  32. Patel, A. D. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception, 24, 99–104.CrossRefGoogle Scholar
  33. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  34. Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827–830.CrossRefGoogle Scholar
  35. Peretz, I., & Zatorre, R. J. (Eds.). (2003). The cognitive neuroscience of music. New York: Oxford University Press.Google Scholar
  36. Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28, 3–14.CrossRefGoogle Scholar
  37. Phillips-Silver, J., & Keller, P. E. (2012). Searching for roots of entrainment and joint action in early musical interactions. Frontiers in Human Neuroscience, 6, 26.CrossRefGoogle Scholar
  38. Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308(5727), 1430–1430.CrossRefGoogle Scholar
  39. Phillips-Silver, J., & Trainor, L. J. (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533–546.CrossRefGoogle Scholar
  40. Pinker, S. (1997). How the mind works. New York: Norton.Google Scholar
  41. Pressing, J. (2002). Black Atlantic rhythm: Its computational and transcultural foundations. Music Perception, 19(3), 285–310.CrossRefGoogle Scholar
  42. Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier.Google Scholar
  43. Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.CrossRefGoogle Scholar
  44. Sacks, O. (2008). Musicophilia: Tales of music and the brain. New York: Vintage Books.Google Scholar
  45. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262.CrossRefGoogle Scholar
  46. Schnupp, J., Nelken, I., & King, A. (2010). Auditory neuroscience: Making sense of sound. Cambridge, MA: The MIT Press.Google Scholar
  47. Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. NeuroImage, 11(1), 1–12.CrossRefGoogle Scholar
  48. Todd, N. P., Lee, C. S., & O’Boyle, D. J. (2002). A sensorimotor theory of temporal tracking and beat induction. Psychological Research, 66(1), 26–39.CrossRefGoogle Scholar
  49. Van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43–66.CrossRefGoogle Scholar
  50. Wallin, N. L., Merker, B., & Brown, S. (Eds.). (2000). The origins of music. Cambridge, MA: MIT Press.Google Scholar
  51. Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106(7), 2468–2471.CrossRefGoogle Scholar
  52. Witek, M. (2012). Groove experience: Emotional and physiological responses to groove-based music. Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009), Jyväskylä, Finland.Google Scholar
  53. Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.CrossRefGoogle Scholar
  54. Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences, 107(13), 5768–5773.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.MARCS InstituteWestern Sydney University (WSU)PenrithAustralia
  2. 2.Institute of Neuroscience (Ions)Université catholique de Louvain (UCL)BrusselsBelgium
  3. 3.International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealCanada

Personalised recommendations