Skip to main content

Application and Future Perspectives of the CBL–CIPK Signaling

  • Chapter
  • First Online:
Global Comparative Analysis of CBL-CIPK Gene Families in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 681 Accesses

Abstract

Climate change because of man-made activities is one of the major concerns of the world. Environmental stresses are the major outcomes of climate change, which adversely affect the crop productivity worldwide. On the top of it, increasing world population also poses a major threat to the natural resources and agriculture. Decreasing crop production due to various biotic and abiotic stresses is main concern of the time. Many of the calcium signaling components have been shown to be involved in regulating stress signaling. And exploring wide spread function of the calcium–CBL–CIPK signaling components will not only enable in-depth understanding of molecular mechanisms behind plant stress responses but could also be utilized in combating crop loss mediated by various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen JH, Sun Y, Sun F, Xia XL, Yin WL (2011) Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1 gene display enhanced tolerance to multiple abiotic stresses. Plant Growth Regul 63:259–269

    Article  CAS  Google Scholar 

  2. Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cuellar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61:58–69

    Article  CAS  PubMed  Google Scholar 

  4. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gao P, Zhao PM, Wang J, Wang HY, Du XM, Wang GL, Xia GX (2008) Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Biochem 46:935–940

    CAS  PubMed  Google Scholar 

  6. Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol. 10:18:doi: 10.1186/1471-2229-10-18

  7. Hu DG, Li M, Luo H, Dong QL, Yao YX, You CX, Hao YJ (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722

    Article  CAS  PubMed  Google Scholar 

  8. Huertas R, Olias R, Eljakaoui Z, Galvez FJ, Li J, De Morales PA, Belver A, Rodriguez-Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ 35:82–1467

    Article  Google Scholar 

  9. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:86–275

    Google Scholar 

  10. Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell calcium (in press)

    Google Scholar 

  11. Li R1, Zhang J, Wu G, Wang H, Chen Y, Wei J. (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ. 2012 Sep;35(9):1582-600. doi: 10.1111/j.1365-3040.2012.02511.x. Epub 2012 Apr 27

  12. Mahajan S, Sopory SK, Tuteja N (2006) Cloning and characterization of CBL–CIPK signalling components from a legume (Pisum sativum). FEBS J 273:25–907

    Article  Google Scholar 

  13. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19–27

    Article  CAS  PubMed  Google Scholar 

  15. Shang G, Cang H, Liu Z, Gao W, Bi R (2010) Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1602–1605

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380

    Article  CAS  PubMed  Google Scholar 

  17. Tuteja N, Mahajan S (2007) Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from pisum sativum. Plant Signal Behav 2:358–361

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    Article  CAS  PubMed  Google Scholar 

  19. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35(531–543):s1–s2

    Google Scholar 

  21. Zhang H, Lv F, Han X, Xia X, Yin W (2013) The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep 32:611–621

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Yin W, Xia X (2010) Shaker-like potassium channels in Populus, regulated by the CBL–CIPK signal transduction pathway, increase tolerance to low-K+ stress. Plant Cell Rep 29:1007–1012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhar K. Pandey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Kanwar, P., Pandey, A. (2014). Application and Future Perspectives of the CBL–CIPK Signaling. In: Global Comparative Analysis of CBL-CIPK Gene Families in Plants. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-09078-8_11

Download citation

Publish with us

Policies and ethics