Skip to main content

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 649 Accesses

Abstract

Calcium plays a pivotal role in regulating the physiological as well as developmental processes in plants. Till now, there are several calcium sensors discovered, which regulate the diverse signaling pathways involved in plant growth and development. One of the major calcium sensors is calcineurin B-like (CBL) decoding the calcium signal during various environmental and physiological processes in plants. Calcium-mediated signal is transduced downstream by CBL-interacting protein kinases (CIPKs), generally phosphorylating the target proteins such as transcription factors or transporters/channel and finally leads to generation of a response. A signaling cascade possesses defined set of CBL–CIPK proteins and several designated target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein–protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924

    Article  CAS  PubMed  Google Scholar 

  4. Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Batistic O, Waadt R, Steinhorst L, Held K, Kudla J (2010) CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J 61:211–222

    Article  CAS  PubMed  Google Scholar 

  6. Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357:400–410

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H (2011) Identification and characterization of putative CIPK genes in maize. J Genet Genomics 38:77–87

    Article  CAS  PubMed  Google Scholar 

  9. Cuellar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Zimmermann S, Gaillard I (2013) Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK–CBL complexes and induced in ripening berry flesh cells. Plant J 73:1006–1018

    Article  CAS  PubMed  Google Scholar 

  10. Cuellar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61:58–69

    Article  CAS  PubMed  Google Scholar 

  11. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE 8:e69881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Drerup MM, Schlucking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  13. Du W, Lin H, Chen S, Wu Y, Zhang J, Fuglsang AT, Palmgren MG, Wu W, Guo Y (2011) Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis. Plant Physiol 156:2235–2243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gao P, Zhao PM, Wang J, Wang HY, Du XM, Wang GL, Xia GX (2008) Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Biochem 46:935–940

    CAS  PubMed  Google Scholar 

  15. Gong D, Guo Y, Jagendorf AT, Zhu JK (2002) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gong D, Guo Y, Schumaker KS, Zhu JK (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134:919–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol 10:18. doi:10.1186/1471-2229-10-18

  18. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hamada S, Seiki Y, Watanabe K, Ozeki T, Matsui H, Ito H (2009) Expression and interaction of the CBLs and CIPKs from immature seeds of kidney bean (Phaseolus vulgaris L.). Phytochemistry 70:501–507

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto K, Eckert C, Anschutz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012) Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL–CIPK complexes toward their target proteins. J Biol Chem 287:7956–7968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu DG, Li M, Luo H, Dong QL, Yao YX, You CX, Hao YJ (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  CAS  PubMed  Google Scholar 

  24. Imamura M, Yuasa T, Takahashi T, Nakamura N, Hnmp S, Shao-Hui Z, Ken-Ichiro S, Mari II (2008) Isolation and characterization of a cDNA coding cowpea (Vigna unguiculata (L.) Walp.) calcineurin B-like protein-interacting protein kinase, VuCIPK1. Plant Biotechnol 25:437–445

    Google Scholar 

  25. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chen JH, Sun Y, Sun F, Xia XL, Yin WL (2011) Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1 gene display enhanced tolerance to multiple abiotic stresses. Plant Growth Regul 63(3):259–269

    Article  CAS  Google Scholar 

  27. Kim KN, Cheong YH, Gupta R, Luan S (2000) Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124:1844–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim KN, Lee JS, Han H, Choi SA, Go SJ, Yoon IS (2003) Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol 52:1191–1202

    Article  CAS  PubMed  Google Scholar 

  29. Kimura S, Kawarazaki T, Nibori H, Michikawa M, Imai A, Kaya H, Kuchitsu K (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195

    Google Scholar 

  30. Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 76:6270–6273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Klee CB, Draetta GF, Hubbard MJ (1988) Calcineurin. Adv Enzymol Relat Areas Mol Biol 61:149–200

    CAS  PubMed  Google Scholar 

  32. Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686

    Article  CAS  PubMed  Google Scholar 

  33. Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol 134:43–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96:4718–4723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J, Hirochika H, Yamane H, Kuchitsu K (2010) Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 153:678–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lee KW, Chen PW, Lu CA, Chen S, Ho TH, Yu SM (2009) Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2:ra61

    Google Scholar 

  38. Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant, Cell Environ 35:1582–1600

    Article  CAS  Google Scholar 

  39. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21:1607–1619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    Article  CAS  PubMed  Google Scholar 

  41. Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  CAS  PubMed  Google Scholar 

  42. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–400

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL (1993) Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90:2202–2206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64:2779–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mahajan S, Sopory SK, Tuteja N (2006) Cloning and characterization of CBL–CIPK signalling components from a legume (Pisum sativum). FEBS J 273:907–925

    Article  CAS  PubMed  Google Scholar 

  46. Pagnussat GC, Fiol DF, Salerno GL (2002) A CDPK type protein kinase is involved in rice SPS light modulation. Physiol Plant 115:183–189

    Article  CAS  PubMed  Google Scholar 

  47. Pandey GK (2008) Emergence of a novel calcium signaling pathway in plants: CBL–CIPK signaling network. Physiol Mol Biol Plants 14:51–68

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo M, Koiwa H, Yun DJ, Hasegawa PM (1998) Stress signaling through Ca2+-calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA 95:9681–9686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19–27

    Article  CAS  PubMed  Google Scholar 

  50. Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  51. Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  CAS  PubMed  Google Scholar 

  52. Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  54. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–417

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Shang G, Cang H, Liu Z, Gao W, Bi R (2010) Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66:1602–1605

    Article  CAS  Google Scholar 

  56. Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. C R Biol 331:587–596

    Article  CAS  PubMed  Google Scholar 

  57. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  CAS  PubMed  Google Scholar 

  58. Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11:2393–2405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P (1982) Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett 137:80–84

    Article  CAS  PubMed  Google Scholar 

  60. Tai F, Wang Q, Yuan Z, Yuan Z, Li H, Wang W (2013) Characterization of five CIPK genes expressions in maize under water stress. Acta Physiologiae Plantarum 35:1555–1564

    Article  CAS  Google Scholar 

  61. Tominaga M, Harada A, Kinoshita T, Shimazaki K (2010) Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol 51:408–421

    CAS  PubMed  Google Scholar 

  62. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    Article  CAS  PubMed  Google Scholar 

  63. Tuteja N, Mahajan S (2007) Further characterization of Calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum. Plant Signal Behav 2:358–361

    Article  PubMed Central  PubMed  Google Scholar 

  64. Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65:733–746

    Article  CAS  PubMed  Google Scholar 

  65. Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    Article  CAS  PubMed  Google Scholar 

  66. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35:531–543

    Article  CAS  PubMed  Google Scholar 

  68. Yim HK, Lim MN, Lee SE, Lim J, Lee Y, Hwang YS (2012) Hexokinase-mediated sugar signaling controls expression of the calcineurin B-like interacting protein kinase 15 gene and is perturbed by oxidative phosphorylation inhibition. J Plant Physiol 169:1551–1558

    Article  CAS  PubMed  Google Scholar 

  69. Yu Y, Xia X, Yin W, Zhang H (2007) Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52:101–110

    Article  CAS  Google Scholar 

  70. Yuasa T, Ishibashi Y, Iwaya-Inoue M (2012) A flower specific calcineurin B-like molecule (CBL)-interacting protein kinase (CIPK) homolog in tomato cultivar micro-tom (Solanum lycopersicum L.). AJPS 3:753–763

    Article  CAS  Google Scholar 

  71. Zhang H, Lv F, Han X, Xia X, Yin W (2013) The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep 32:611–621

    Article  CAS  PubMed  Google Scholar 

  72. Zhang H, Yin W, Xia X (2008) Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul 56:129–140

    Article  CAS  Google Scholar 

  73. Zhang H, Yin W, Xia X (2010) Shaker-like potassium channels in Populus, regulated by the CBL–CIPK signal transduction pathway, increase tolerance to low-K+ stress. Plant Cell Rep 29:1007–1012

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14. doi:10.1186/1471-2229-14-8

  75. Zhang T, Wang Q, Chen X, Tian C, Wang X, Xing T, Li Y, Wang Y (2005) Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. J Plant Physiol 162:1149–1159

    Article  CAS  PubMed  Google Scholar 

  76. Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J, Jin Y, Wang J, Wang G (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 69:661–674

    Article  CAS  PubMed  Google Scholar 

  77. Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhar K. Pandey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Kanwar, P., Pandey, A. (2014). Basic Terms and Overview of Contents. In: Global Comparative Analysis of CBL-CIPK Gene Families in Plants. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-09078-8_1

Download citation

Publish with us

Policies and ethics