Skip to main content

Is There a Place for Microsurgical Vascular Decompression of the Brainstem for Apparent Essential Blood Hypertension? A Review

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 42))

Abstract

There are anatomical and physiological evidences that the ventrolateral (VL) region of the medulla plays an important role in blood pressure regulation and that dysfunction at this level may generate hypertension (HT). Vascular compression by a megadolicho-artery from the vertebrobasilar arterial system at the root entry/exit zone (REZ) of the glossopharyngeal (IXth) and vagal (Xth) cranial nerves (CNs) and the adjacent VL aspect of the medulla has been postulated as a causal factor for HT from neurogenic origin. The first attempts at microvascular decompression (MVD) of the IX–Xth CNs together with the neighbouring VL brainstem was revealed promising. These surgical attempts, as well as the numerous MRI studies, with the goal to detect and identify likely responsible neurovascular conflicts (NVC), are reviewed. Established criteria for indication of MVD as an aetiological treatment of apparent essential HT are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimura T, Furutani Y, Jimi Y, Saito K, Kashiwagi S, Kato S, Ito H (1995) Essential hypertension and neurovascular compression at the ventro-lateral medulla oblongata: MR evaluation. AJNR Am J Neuroradiol 16:401–405

    CAS  PubMed  Google Scholar 

  2. Alexander RS (1946) Tonic and reflex functions of the medullary sympathetic cardiovascular centers. J Neurophysiol 9:205–217

    CAS  PubMed  Google Scholar 

  3. Amendt K, Czachurski J, Dembrowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1:103–107

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ (1982) Distribution of noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212:173–187

    Article  CAS  PubMed  Google Scholar 

  5. Barker FG, Jannetta PJ, Bissonette DJ, Shields PT, Larkins MV, Jho MD (1995) Microvascular decompression for hemifacial spasm. J Neurosurg 82:201–210

    Article  PubMed  Google Scholar 

  6. Blessing WW, Sved AF, Reis DJ (1984) Arterial pressure and plasma vasopressin: regulation by neurons in the caudal ventrolateral medulla of the rabbit. Clin Exp Hypertens Theory Pract A6(1–2):149–156

    Article  CAS  Google Scholar 

  7. Boogaarts HD, Menovsky T, Devries J, Verbeek ALM, Lenders JW, Grotenhuis JA (2012) Primary hypertension and neurovascular: a meta-analysis of magnetic resonance imaging studies. J Neurosurg 116:147–156

    Article  PubMed  Google Scholar 

  8. Caverson MM, Ciriello J, Calaresu RF (1983) Direct pathway from cardiovascular neurons in the ventro-lateral medulla to the region of the intermediolateral nucleus of the upper thoracic cord: an anatomical and electrophysiological investigation in the cat. J Auton Nerv Syst 9:451–475

    Article  CAS  PubMed  Google Scholar 

  9. Caverson MM, Ciriello J, Calaresu RF (1983) Cardiovascular afferent inputs to neurons in the ventro-lateral medulla projecting directly to the central autonomic areas of the thoracic cord in the cat. Brain Res 275:354–358

    Article  Google Scholar 

  10. Ceral J, Zizka J, Elias P, Solar M, Klzo L, Reissigova J (2007) Neurovascular compression in essential hypertension: cause, consequence or unrelated finding? J Hum Hypertens 21:179–181

    Article  CAS  PubMed  Google Scholar 

  11. Ciriello J, Caverson MM (1986) Bidirectional cardiovascular connections between ventro-lateral medulla and nucleus of the solitary tract. Brain Res 367:273–281

    Article  CAS  PubMed  Google Scholar 

  12. Colon GP, Quint DJ, Dickinson LD, Brunberg JA, Jamerson KA, Hoff JT, Ross DA (1998) Magnetic resonance evaluation of ventro-lateral medullary compression in essential hypertension. J Neurosurg 88:226–231

    Article  CAS  PubMed  Google Scholar 

  13. Colosimo C, Chianese M, Romano S, Della Chiara V, Vanacore N (2002) Hemifacial spasm: a clinical and epidemiological study. Mov Disord 17:5235–5236

    Google Scholar 

  14. Colosimo C, Chianese M, Romano S, Vanacore N (2003) Is hypertension associated with hemifacial spasm? Neurology 61:587 (author reply to TAN et al article)

    Article  CAS  PubMed  Google Scholar 

  15. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62(suppl 232):1–55

    Google Scholar 

  16. Dampney RAL, Goodchild AK, Tan E (1985) Vasopressor neurons in the rostral ventrolateral medulla of the rabbit. J Auton Nerv Syst 14:239–254

    Article  CAS  PubMed  Google Scholar 

  17. Defazio G, Berardelli A, Abbruzzese G, Coriello V, De Salvia R, Federico F, Marchese R, Vacca L, Assennato G, Livrea P (2000) Primary hemifacial spasm and arterial hypertension: a multicentre case–control study. Neurology 54:1198–1200

    Article  CAS  PubMed  Google Scholar 

  18. Dittmar C (1873) Ueber die Lage des Sogenannten Gefässcentrums in der Medulla oblongata. Berichte ueber die Verhandlungen der saechsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch Physikalische Klasse, Leipzig 25:449–469

    Google Scholar 

  19. European Society of Hypertension – European Society of Cardiology Hypertension Guidelines Committee (2003) Practice guidelines for primary care physician: 2003 ESH/ESC hypertension guidelines. J Hypertens 21:1179–1186

    Google Scholar 

  20. Geiger H, Naraghi R, Schobel HP, Frank H, Sterzel RB, Fahlbusch R (1998) Decrease of blood pressure by ventro-lateral medullary decompression in essential hypertension. Lancet 352:446–449

    Article  CAS  PubMed  Google Scholar 

  21. Giuffrida S, De Luca S, Lanza S, Papotto M, Restivo DA, Tomarchio L (1998) Ipertensione arteriosa e compressione vascolare sul bulbo. Riv Neurobiol 44:295–300

    Google Scholar 

  22. Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1983) Lesions of epinephrine neurons in the rostral ventro-lateral medulla abolish the vasodepressor components of the baroreflex and cardiopulmonary reflex. Hypertension 5(suppl V):80–84

    Article  CAS  Google Scholar 

  23. Guidelines for the management of hypertension: the World Health Organization/International Society of Hypertension (1995) J Hypertens Suppl 13:S119–S122

    Google Scholar 

  24. Hökfelt T, Fuxe K, Goldstein M (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  Google Scholar 

  25. Hollenbleicher H, Schmitz SA, Koennecke HC, Offermann R, Offermann J, Zeytountchian H, Wolf KJ, Distler A, Sharma AM (2001) Neurovascular contact of cranial nerve IX and X root-entry zone in hypertensive patients. Hypertension 37:176–181

    Article  Google Scholar 

  26. Howe PR (1985) Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. J Auton Nerv Syst 12:95–115

    Article  CAS  PubMed  Google Scholar 

  27. Jannetta PJ, Gendell HM (1979) Clinical observations on etiology of essential hypertension. Surg Forum 30:431–432

    CAS  PubMed  Google Scholar 

  28. Jannetta PJ, Segal R, Wolfson SK Jr (1985) Neurogenic hypertension etiology and surgical treatment. I. Observations in 53 patients. Ann Surg 201:391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Johnson D, Coley SC, Brown J, Moseley IF (2000) The role of MRI in screening for neurogenic hypertension. Neuroradiology 42:99–103

    Article  CAS  PubMed  Google Scholar 

  30. Kleineberg B, Becker H, Gaab MR, Naraghi R (1992) Essential hypertension associated with neurovascular compression: angiographic findings. Neurosurgery 30:834–841

    Article  CAS  PubMed  Google Scholar 

  31. Leal PR, Hermier M, Froment JC, Soliza MA, Cristino-Filho G, Sindou M (2010) Preoperative demonstration of the neurovascular compression characteristics with special emphasis on the degree of compression, using high-resolution magnetic resonance imaging: a prospective study, with compression to surgical findings, in 100 consecutive patients who underwent microvascular decompression for trigeminal neuralgia. Acta Neurochir 152:817–825

    Article  PubMed  Google Scholar 

  32. Leal PR, Hermier M, Souza MA, Cristino-Filho G, Froment SC, Sindou M (2011) Visualization of vascular compression of the trigeminal nerve with high-resolution 3 T MRI: a prospective study comparing preoperative imaging analysis to surgical findings in 40 consecutive patients who underwent microvascular decompression for trigeminal neuralgia. Neurosurgery 2011(69):15–26

    Article  Google Scholar 

  33. Levy EI, Clyde B, McLaughlin MR, Jannetta PG (1998) Microvascular decompression of the left lateral medulla oblongata for severe refractory neurogenic hypertension. Neurosurgery 43:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Levy EI, Scarrow AM, Jannetta PJ (2001) Microvascular decompression in the treatment of hypertension: review and update. Surg Neurol 55:2–11

    Article  CAS  PubMed  Google Scholar 

  35. Moller AR, Moller M (1989) Does intra operative monitoring of auditory evoked potentials reduce incidence of hearing less as a complication of microvascular decompression of cranial nerves. Neurosurgery 24:257–263

    Article  CAS  PubMed  Google Scholar 

  36. Morimoto S, Sasaki S, Miki S, Kawa T, Itoh H, Nakata T, Takeda K, Nakagawa M, Kizu O, Naruse S, Maeda T (1997) Neurovascular compression of the rostral ventro-lateral medulla related to essential hypertension. Hypertension 30:77–82

    Article  CAS  PubMed  Google Scholar 

  37. Morise T, Horita M, Kitagawa I, Shinzato R, Hoshiba Y, Masuya H, Suzuki M, Takekoshi N (2000) The potent role of increased sympathetic tone in pathogenesis of essential hypertension with neurovascular compression. J Hum Hypertens 14:807–811

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura T, Osawa M, Uchiyama S, Iwata M (2007) Arterial hypertension in patients with left primary hemifacial spasm is associated with neurovascular compression at the left rostral ventro-lateral medullar EUR. Neurology 57:150–155

    Google Scholar 

  39. Naraghi R, Fahlbusch R (2001) Microvascular decompression for the treatment of hypertension. Oper Tech Neurosurg 4(3):153–161

    Article  Google Scholar 

  40. Naraghi R, Geiger H, Crnac J, Huk W, Fahlbusch R, Engels G, Luft FC (1994) Posterior fossa neurovascular anomalies in essential hypertension. Lancet 344:1466–1470

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira LD, Cardoso F, Vargas AP (1999) Hemifacial spasm and arterial hypertension. Mov Disord 14:832–835

    Article  CAS  PubMed  Google Scholar 

  42. Polo G, Fischer C, Sindou M, Marneffe V (2004) Brainstem auditory evoked potential monitoring during microvascular decompression for hemifacial spasm. Neurosurgery 54:97–106

    Article  PubMed  Google Scholar 

  43. Reis DJ, Ross CA, Ruggiero AR, Granata AR, Joh TH (1984) Role of adrenaline neurons of the ventro-lateral medulla (the CI group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens Theory Pract A6(1–2):221–241

    Article  CAS  Google Scholar 

  44. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 273:356–361

    Article  CAS  PubMed  Google Scholar 

  45. Ca R, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventro-lateral medulla. J Comp Neurol 242:511–534

    Article  Google Scholar 

  46. Säglitz SA, Gaab MR (2002) Investigations using magnetic resonance imaging: is neurovascular compression present in patients with essential hypertension? J Neurosurg 96:1006–1012

    Article  PubMed  Google Scholar 

  47. Sauvain MO, Magistris MR, de Tribolet N (2001) Microvascular decompression of the facial nerve. Oper Tech Neurosurg 4:127–136

    Article  Google Scholar 

  48. Segal R, Gendell HM, Canfield D, Dujovny M, Jannetta PJ (1979) Cardiovascular responses to pulsatile compression applied to ventro-lateral medulla. Surg Forum 30:433–434

    CAS  PubMed  Google Scholar 

  49. Segal R, Gendell HM, Canfield D, Dujovny M, Jannetta P (1982) Hemodynamic changes induced by pulsatile compression of the ventro-lateral medulla. Angiology 33:161–172

    Article  CAS  PubMed  Google Scholar 

  50. Segal R, Jannetta PJ, Wolfson SK, Dujovny M, Cook EE (1982) Implanted pulsatile balloon device for simulation of neurovascular compression. J Neurosurg 57:646–650

    Article  CAS  PubMed  Google Scholar 

  51. Sendeski MM, Consolim-Colombo FM, Krieger EM, Leite Cda C (2006) The spectrum of magnetic resonance imaging findings in hypertension-related neurovascular compression. Neuroradiology 48:21–25

    Article  PubMed  Google Scholar 

  52. Sindou M (2005) Microvascular decompression for primary hemifacial spasm. Importance of intra operative neurophysiological monitoring. Acta Neurochir 147:1019–1026

    Article  CAS  PubMed  Google Scholar 

  53. Sindou M, Fobe SL, Ciriano D, Fischer C (1992) Hearing prognosis and intra-operative guidance of brainstem evoked potentials in microvascular decompression. Laryngoscope 102:678–682

    Article  CAS  PubMed  Google Scholar 

  54. Sindou M, Leston J, Decullier E, Chapuis F (2006) Microvascular decompression for primary trigeminal neuralgia (typical or atypical). Long-term effectiveness or pain; prospective study with survival analysis in a consecutive series of 362 patients. Acta Neurochir 148:1235–1245

    Article  CAS  PubMed  Google Scholar 

  55. Sindou M, Leston J, Decullier E, Chapuis F (2007) Microvascular decompression for primary trigeminal neuralgia: long-term effectiveness and prognostic factors in a series of 632 consecutive patients with clear-cut neurovascular conflicts who underwent pure decompression. J Neurosurg 107:1144–1153

    Article  PubMed  Google Scholar 

  56. Smith PA, Meaney JF, Graham LN, Stoker JB, Mackintosh AF, Mary DA, Ball SG (2004) Relationship of neurovascular compression to central sympathetic discharge and essential hypertension. J Am Coll Cardiol 43:1453–1458

    Article  PubMed  Google Scholar 

  57. Tan EK, Chan LL, Lum SY, Koh P, Han SY, Fook-Chong SM, Lo YL, Pavanni R, Wong MC, Lim SH (2003) Is hypertension associated with hemifacial spasm? Neurology 60:343–344

    Article  CAS  PubMed  Google Scholar 

  58. Thuerl C, Rump LC, Otto M, Winterer JT, Schneider B, Funk L, Laubenberger J (2001) Neurovascular contact of the brainstem in hypertensive and normotensive subjects: MR findings and clinical significance. AJNR Am J Neuroradiol 22:476–480

    CAS  PubMed  Google Scholar 

  59. Watters MR, Burton BS, Turner GE, Cannard KR (1996) MR screening for brainstem compression in hypertension. AJNR Am J Neuroradiol 17:217–221

    CAS  PubMed  Google Scholar 

  60. World Health Organization (WHO)/International Society of Hypertension (ISH) guidelines for the management of hypertension (1999) J Hypertens 17:151–183

    Google Scholar 

  61. WHO, ISH Writing Group (2003) World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21:1983–1992

    Google Scholar 

  62. Zizka J, Ceral J, Elias P, Tintera J, Klzo L, Solar M, Straka L (2004) Vascular compression of rostral medulla oblongata: prospective MR imaging study in hypertensive and normotensive subjects. Radiology 230:65–69

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Sindou MD, DSc .

Editor information

Editors and Affiliations

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sindou, M. (2015). Is There a Place for Microsurgical Vascular Decompression of the Brainstem for Apparent Essential Blood Hypertension? A Review. In: Schramm, J. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-09066-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09066-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09065-8

  • Online ISBN: 978-3-319-09066-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics