Skip to main content

Observing, Modelling and Checking Slope Behaviour: Is There a Better Way to Fully Exploit the Expertise of Geologists and Engineers at the Same Time?

  • Conference paper
  • First Online:
Engineering Geology for Society and Territory - Volume 2
  • 167 Accesses

Abstract

The mechanics of many landslides from the onset of failure to arrest is still an obscure process that deserves to be explored in depth. This is a key point for a correct land management, mostly in areas susceptible to extremely rapid to moderate landslides. Experience suggests that capturing the basic mechanical processes that govern landslide evolution needs careful field surveys, site and laboratory investigations, and checking of assumed mechanisms through adequate mathematical models. This complex procedure can be pursued only by integrating the work of experts coming from different backgrounds, as geologists and geotechnical engineers. The successful work carried out in the interpretation of some flow-like landslides is described, based on the Authors’ experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askarinejad A, Casini F, Bischof P, Beck A, Springman SM (2012) Rainfall induced instabilities: a field experiment on a silty sand slope in Northern Switzerland. Ital Geotech J 3:50–71

    Google Scholar 

  • Bertolini G, Pizziolo M (2008) Risk assessment strategies for the reactivation of earth flows in the Northern Apennines (Italy). Eng Geol 102(3–4):178–193

    Article  Google Scholar 

  • Brunsden D (1984) Mudslides. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 363–410

    Google Scholar 

  • Comegna L, Picarelli L, Urciuoli G (2007) The mechanics of mudslides as a cyclic undrained-drained process. Landslides 4(3):217–232

    Article  Google Scholar 

  • Cotecchia V, Del Prete M, Federico A, Fenelli GB, Pellegrino A, Picarelli L (1984) Some observations on a typical mudslide in a highly tectonized formation in Southern Apennines. In: Proceedings of the IV international symposium on landslides, Toronto, vol 2, pp 39–44

    Google Scholar 

  • Cruden D (1993) Slope stability and protection. In: Proceedings of the international symposium on hard soils-soft rocks, Athens, vol 3, pp 1957–1984

    Google Scholar 

  • Eckersley J (1990) Instrumented laboratory flowslides. Géotechnique 40(3):489–502

    Article  Google Scholar 

  • Einstein A (1934) The world as I see it. Newton Compton

    Google Scholar 

  • Einstein A (1932) Emanuel Libman anniversary volumes, vol 1. International Press, New York

    Google Scholar 

  • Faella C (2005) Flowslide effects on constructions. In: Picarelli L (ed) Proceedings of the international conference on fast slope movements. Prediction and prevention for risk mitigation, Naples, 11–13 May 2003. Patron, Bologna, vol 2, pp 53–61

    Google Scholar 

  • Giusti G, Iaccarino G, Pellegrino A, Picarelli L, Urciuoli G (1996) Kinematic features of earthflows in Southern Apennine. In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, Trondheim, vol 1, pp 457–462

    Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of flow type. Environ Eng Geosci 7(3):1–18

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Hutchinson JN (1988) Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Proceedings of the V international symposium on landslides, Lausanne, vol 1, pp 3–35

    Google Scholar 

  • Hutchinson JN, Bhandari R (1971) Undrained loading: a fundamental mechanism of mudflows and other mass movements. Géotechnique 21:353–358

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Lahusen RG (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246:796–799

    Article  Google Scholar 

  • Lampitiello S (2004) Resistenza non drenata e suscettività alla liquefazione di ceneri vulcaniche della Regione Campania. Unpublished PhD thesis, Seconda Università di Napoli

    Google Scholar 

  • Locat A (2012) Rupture progressive et étalements dans les argiles sensibles. PhD thesis, Dép. de Génie Civil, Université Laval, Québec

    Google Scholar 

  • Meunier M (1993) Classification of stream flows. In: Proceedings of the Pierre Beghin international workshop, Grénoble, pp 231–236

    Google Scholar 

  • Moriwaki H, Inokuchi T, Hattanji T, Sassa K, Ochiai H, Wang G (2004) Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 1(4):277–288

    Article  Google Scholar 

  • Ochiai H, Okada Y, Furuya G, Okura Y, Matsui T, Sammori T, Terajima T, Sassa K (2004) A fluidized landslide on a natural slope by artificial rainfall. Landslides 1:211–220

    Article  Google Scholar 

  • Olivares L, Damiano E (2007) Post-failure mechanics of landslides: a laboratory investigation of flowslides in pyroclastic soils. J Geotechn Geoenviron Eng ASCE 133(1):51–62

    Article  Google Scholar 

  • Olivares L, Picarelli L (2001) Susceptibility of loose pyroclastic soils to static liquefaction: some preliminary data. In: Kühne M, Einstein HH, Krauter E, Klapperich H, Pöttler R (eds) Proceedings of the international conference on landslides-causes, impacts and countermeasures, Davos, pp 75–85

    Google Scholar 

  • Olivares L, Picarelli L (2006) Modelling of flowslides behaviour for risk mitigation. In: Ng CWW, Zhang LM, Wang YH (eds) Proceedings of the 6th ICPMG ’06, international conference on physical modelling in geotechnics, Hong Kong, 2–4 August 2006. Taylor & Francis/Balkema, Leiden Netherlands, vol 1, pp 99–113

    Google Scholar 

  • Pellegrino A, Picarelli L, Urciuoli G (2004) Experiences of mudslides in Italy. In: Picarelli L (ed) Proceedings of the international workshop on occurrence and mechanisms of flow-like landslides in natural slopes and earthfills, Sorrento, 2003. Patron, Bologna, pp 191–206

    Google Scholar 

  • Picarelli L (1988) Modellazione e monitoraggio di una colata in formazioni strutturalmente complesse. In: Cascini L (ed) Proceedings of the Conv. GNDCI: Problemi di Cartografia e di Monitoraggio dei Fenomeni Franosi, Bologna, vol 2, pp 119–130

    Google Scholar 

  • Picarelli L (1993) Structure and properties of clay shales involved in earthflows. In: Anagnastopoulos A, Schlosser F, Kalteziotis N, Frank R (eds) Proceedings of the international symposium on the geotechnical engineering of hard soils-soft rocks, Athens. Balkema, Rotterdam, vol 3, pp 2009–2019

    Google Scholar 

  • Picarelli L (2000) Mechanisms and rates of slope movements in fine grained soils. In: Proceedings of the international conference on geotechnical and geological engineering, GeoEng2000, Melbourne, vol 1, pp 1618–1670

    Google Scholar 

  • Picarelli L (2001) Transition from slide to earthflow, and the reverse. Proceedings of the satellite conference on transition from slide to flow—mechanisms and remedial measures, Trabzon, Turkey, on CD ROM

    Google Scholar 

  • Picarelli L (2009) Conoscere per prevedere (dall’equilibrio limite alla meccanica dei pendii). Riv Ital Geotech 43(4):12–68

    Google Scholar 

  • Picarelli L, Damiano E, Olivares L, Greco R, Zeni L (2014) Performance of slope behaviour indicators in unsaturated pyroclastic soils. Submitted for publication

    Google Scholar 

  • Picarelli L, Di Maio C (2010) Deterioration of stiff clays and clay shales. In: Calcaterra D, Parise M (eds) Weathering as a predisposing factor to slope movements, vol 23. Geological Society London, Engineering Geology Special Publication, pp 15–32

    Google Scholar 

  • Picarelli L, Russo C, Urciuoli G (1995) Modelling earthflows based on experiences. In: Proceedings of the 11th European conference on soil mechanics and foundation engineering: the interplay between geotechnical engineering and engineering geology. Danish Geotechnical Society, Copenhagen, vol 6, pp 157–162

    Google Scholar 

  • Picarelli L, Di Maio C, Olivares L, Urciuoli G (1998) Properties and behaviour of tectonised clay shales in Italy. In: Evangelista A, Picarelli L (eds) Proceedings of the 2nd international symposium on the geotechnics of hard soils-soft rocks, Napoli. Balkema, Rotterdam, vol 3, pp 1211–1241

    Google Scholar 

  • Picarelli L, Mandolini A, Russo C (1999) Long-term movements of an earthflow in tectonized clay shales. In: Yagi N, Yamagami T, Jiang JC (eds) Proceedings of the international symposium slope stability engineering, Matsuyama, vol 2, pp 1151–1158

    Google Scholar 

  • Picarelli L, Evangelista A, Rolandi G, Paone A, Nicotera MV, Olivares L, Scotto di Santolo A, Lampitiello S, Rolandi M (2006) Mechanical properties of pyroclastic soils in Campania Region. In: Tan TS, Phoon KK, Height DW, Leroueil S (eds) Proceedings of the 2nd international symposium on characterisation and engineering properties of natural soils. Singapore. Taylor & Francis, London, vol 4, pp 2331–2384

    Google Scholar 

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008a) Mechanical aspects of flow-like movements in granular and fine-grained soils. Rock Mech Rock Eng 41(1):179–197

    Article  Google Scholar 

  • Picarelli L, Olivares L, Avolio B (2008b) Zoning for flowslide and debris flow in pyroclastic soils of Campania Region based on “infinite slope” analysis. Eng Geol 102(3–4):132–141

    Article  Google Scholar 

  • Poulos SJ (1981) The steady state of deformation. J Geotechn Eng Div ASCE 107:553–561

    Google Scholar 

  • Russell B (1965) History of western philosophy. George Allen & Unwing Lmt, London

    Google Scholar 

  • Russo C (1993) Caratteri evolutivi dei movimenti traslativi e loro interpretazione meccanica attraverso l’analisi numerica. Unpublished PhD thesis, Università di Napoli Federico II

    Google Scholar 

  • Sladen JA, D’Hollander RD, Krahn J, Mitchell DE (1985) Back analysis of the Nerlek berm liquefaction slides. Can Geotech J 22:579–588

    Article  Google Scholar 

  • Vallejo L (1984) Analysis of the mobilization of submarine landslides. In: Proceedings of the 4th international symposium on landslides, Toronto, vol 2, pp 361–366

    Google Scholar 

  • Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34:905–917

    Article  Google Scholar 

  • Wang G, Sassa K (2001) Factors affecting rainfall-induced flowslides in laboratory flume tests. Géotechnique 51(7):587–599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Picarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Picarelli, L. (2015). Observing, Modelling and Checking Slope Behaviour: Is There a Better Way to Fully Exploit the Expertise of Geologists and Engineers at the Same Time?. In: Lollino, G., et al. Engineering Geology for Society and Territory - Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-09057-3_5

Download citation

Publish with us

Policies and ethics