Skip to main content

Obesity and Glucose Metabolism

  • Chapter
  • First Online:
Multidisciplinary Approach to Obesity
  • 2290 Accesses

Abstract

Obesity is associated with multiple metabolic alterations that are risk factors for glucose homeostasis abnormalities, cardiovascular diseases, and nonalcoholic fatty liver disease. It is believed that insulin resistance in the adipose tissue, liver, and skeletal muscle is crucial in the pathogenesis of these metabolic abnormalities. Adipocytes are key regulators of whole-body energy homeostasis, and altered adipose tissue glucose metabolism is also an important cause of insulin resistance and metabolic function. Adipose tissue contributes to the development of obesity-related glucose abnormalities through excessive release of free fatty acids (FFA), adipokines, cytokines, and macrophage infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein S, Wadden T, Sugerman HJ (2002) AGA technical review on obesity. Gastroenterology 123(3):882–932

    Article  PubMed  Google Scholar 

  2. Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Kober L (2005) Impact of obesity on long-term prognosis following acute myocardial infarction. Int J Cardiol 98(1):123–131

    Article  PubMed  Google Scholar 

  3. McAuley P, Myers J, Abella J, Froelicher V (2007) Body mass, fitness and survival in veteran patients: another obesity paradox? Am J Med 120(6):518–524

    Article  PubMed  Google Scholar 

  4. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645

    Article  CAS  PubMed  Google Scholar 

  5. DeFronzo RA (2010) Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 53(7):1270–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E et al (1989) Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 84(1):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 106(36):15430–15435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magkos F, Fabbrini E, Conte C, Patterson BW, Klein S (2012) Relationship between adipose tissue lipolytic activity and skeletal muscle insulin resistance in nondiabetic women. J Clin Endocrinol Metab 97(7):E1219–E1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colditz GA, Willett WC, Rotnitzky A, Manson JE (1995) Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 122(7):481–486

    Article  CAS  PubMed  Google Scholar 

  10. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1994) Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 17(9):961–969

    Article  CAS  PubMed  Google Scholar 

  11. Flegal KM, Troiano RP (2000) Changes in the distribution of body mass index of adults and children in the US population. Int J Obes Relat Metab Disord 24(7):807–818

    Article  CAS  PubMed  Google Scholar 

  12. Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt DD, Li C et al (2009) Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care 32(2):287–294

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO (2005) Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000–2002. Diabetes Care 28(7):1599–1603

    Article  PubMed  Google Scholar 

  14. Ohlson LO, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsen L et al (1985) The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 34(10):1055–1058

    Article  CAS  PubMed  Google Scholar 

  15. Kaye SA, Folsom AR, Sprafka JM, Prineas RJ, Wallace RB (1991) Increased incidence of diabetes mellitus in relation to abdominal adiposity in older women. J Clin Epidemiol 44(3):329–334

    Article  CAS  PubMed  Google Scholar 

  16. Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE et al (1995) Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA 273(6):461–465

    Article  CAS  PubMed  Google Scholar 

  17. Rimm EB, Stampfer MJ, Giovannucci E, Ascherio A, Spiegelman D, Colditz GA et al (1995) Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol 141(12):1117–1127

    CAS  PubMed  Google Scholar 

  18. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130(2):89–96

    Article  CAS  PubMed  Google Scholar 

  19. Lee CD, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr 69(3):373–380

    CAS  PubMed  Google Scholar 

  20. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH et al (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368(9548):1681–1688

    Article  PubMed  Google Scholar 

  21. Karelis AD (2008) Metabolically healthy but obese individuals. Lancet 372(9646):1281–1283

    Article  PubMed  Google Scholar 

  22. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F (2005) Prevalence of uncomplicated obesity in an Italian obese population. Obes Res 13(6):1116–1122

    Article  PubMed  Google Scholar 

  23. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K et al (2008) Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168(15):1609–1616

    Article  PubMed  Google Scholar 

  24. Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D et al (2005) The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab 90(7):4145–4150

    Article  CAS  PubMed  Google Scholar 

  25. Aguilar-Salinas CA, Garcia EG, Robles L, Riano D, Ruiz-Gomez DG, Garcia-Ulloa AC et al (2008) High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab 93(10):4075–4079

    Article  CAS  PubMed  Google Scholar 

  26. Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR (2012) Insulin-sensitive obesity in humans - a ‘favorable fat’ phenotype? Trends Endocrinol Metab 23(3):116–124

    Article  CAS  PubMed  Google Scholar 

  27. Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA et al (2013) Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145(2):366–374, e1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boden G (2006) Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep 6(3):177–181

    Article  CAS  PubMed  Google Scholar 

  30. Kelley DE, Mokan M, Simoneau JA, Mandarino LJ (1993) Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 92(1):91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA (1983) Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72(5):1737–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santomauro AT, Boden G, Silva ME, Rocha DM, Santos RF, Ursich MJ et al (1999) Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48(9):1836–1841

    Article  CAS  PubMed  Google Scholar 

  33. Kleiber H, Munger R, Jallut D, Tappy L, Felley C, Golay A et al (1992) Interaction of lipid and carbohydrate metabolism after infusions of lipids or of lipid lowering agents: lack of a direct relationship between free fatty acid concentrations and glucose disposal. Diabete Metab 18(2):84–90

    CAS  PubMed  Google Scholar 

  34. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3(6):393–402

    Article  CAS  PubMed  Google Scholar 

  35. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7):2005–2011

    Article  CAS  PubMed  Google Scholar 

  36. Reue K, Xu P, Wang XP, Slavin BG (2000) Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J Lipid Res 41(7):1067–1076

    CAS  PubMed  Google Scholar 

  37. Phan J, Reue K (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab 1(1):73–83

    Article  CAS  PubMed  Google Scholar 

  38. Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296(6):E1195–E1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouchard C, Perusse L (1993) Genetics of obesity. Annu Rev Nutr 13:337–354

    Article  CAS  PubMed  Google Scholar 

  40. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM et al (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149(5):2062–2071

    Article  CAS  PubMed  Google Scholar 

  41. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100(4):644–669

    Article  CAS  PubMed  Google Scholar 

  42. Stratigopoulos G, Padilla SL, LeDuc CA, Watson E, Hattersley AT, McCarthy MI et al (2008) Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 294(4):R1185–R1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wahlen K, Sjolin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49(3):607–611

    Article  PubMed  CAS  Google Scholar 

  44. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39(6):724–726

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J et al (2008) Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes 57(1):264–268

    Article  CAS  PubMed  Google Scholar 

  46. Hotta K, Nakata Y, Matsuo T, Kamohara S, Kotani K, Komatsu R et al (2008) Variations in the FTO gene are associated with severe obesity in the Japanese. J Hum Genet 53(6):546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57(8):2226–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hegele RA, Harris SB, Hanley AJ, Sadikian S, Connelly PW, Zinman B (1996) Genetic variation of intestinal fatty acid-binding protein associated with variation in body mass in aboriginal Canadians. J Clin Endocrinol Metab 81(12):4334–4337

    CAS  PubMed  Google Scholar 

  49. Yamada K, Yuan X, Ishiyama S, Koyama K, Ichikawa F, Koyanagi A et al (1997) Association between Ala54Thr substitution of the fatty acid-binding protein 2 gene with insulin resistance and intra-abdominal fat thickness in Japanese men. Diabetologia 40(6):706–710

    Article  CAS  PubMed  Google Scholar 

  50. Agren JJ, Vidgren HM, Valve RS, Laakso M, Uusitupa MI (2001) Postprandial responses of individual fatty acids in subjects homozygous for the threonine- or alanine-encoding allele in codon 54 of the intestinal fatty acid binding protein 2 gene. Am J Clin Nutr 73(1):31–35

    CAS  PubMed  Google Scholar 

  51. Baier LJ, Bogardus C, Sacchettini JC (1996) A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 271(18):10892–10896

    Article  CAS  PubMed  Google Scholar 

  52. Marin C, Perez-Jimenez F, Gomez P, Delgado J, Paniagua JA, Lozano A et al (2005) The Ala54Thr polymorphism of the fatty acid-binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr 82(1):196–200

    CAS  PubMed  Google Scholar 

  53. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  54. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP et al (1997) Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 241(2):270–274

    Article  CAS  PubMed  Google Scholar 

  55. Ludovico O, Pellegrini F, Di Paola R, Minenna A, Mastroianno S, Cardellini M et al (2007) Heterogeneous effect of peroxisome proliferator-activated receptor gamma2 Ala12 variant on type 2 diabetes risk. Obesity (Silver Spring) 15(5):1076–1081

    Article  CAS  Google Scholar 

  56. Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med 341(4):248–257

    Article  CAS  PubMed  Google Scholar 

  57. Attie AD, Scherer PE (2009) Adipocyte metabolism and obesity. J Lipid Res 50(Suppl):S395–S399

    PubMed  PubMed Central  Google Scholar 

  58. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733

    Article  CAS  PubMed  Google Scholar 

  59. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268(30):22243–22246

    CAS  PubMed  Google Scholar 

  60. Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M et al (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484(7394):333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17(3):171–180

    Article  CAS  PubMed  Google Scholar 

  62. Stadler K (2012) Oxidative stress in diabetes. Adv Exp Med Biol 771:272–287

    PubMed  Google Scholar 

  63. Zmijewski JW, Zhao X, Xu Z, Abraham E (2007) Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am J Physiol Cell Physiol 293(1):C255–C266

    Article  CAS  PubMed  Google Scholar 

  64. Bhole V, Choi JW, Kim SW, de Vera M, Choi H (2010) Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med 123(10):957–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vuorinen-Markkola H, Yki-Jarvinen H (1994) Hyperuricemia and insulin resistance. J Clin Endocrinol Metab 78(1):25–29

    CAS  PubMed  Google Scholar 

  66. Yoo TW, Sung KC, Shin HS, Kim BJ, Kim BS, Kang JH et al (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69(8):928–933

    Article  CAS  PubMed  Google Scholar 

  67. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S (2014) Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 63(3):976–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodriguez-Hernandez H, Simental-Mendia LE, Rodriguez-Ramirez G, Reyes-Romero MA (2013) Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013:678159

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R et al (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53(5):1285–1292

    Article  CAS  PubMed  Google Scholar 

  71. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q et al (2011) Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 166(2):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935

    Article  CAS  PubMed  Google Scholar 

  74. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291(14):1730–1737

    Article  CAS  PubMed  Google Scholar 

  75. Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A, Kohno N (2006) Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. J Clin Endocrinol Metab 91(10):3873–3877

    Article  CAS  PubMed  Google Scholar 

  76. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T et al (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99(1):196–208

    Article  CAS  PubMed  Google Scholar 

  77. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    Article  CAS  PubMed  Google Scholar 

  78. Fain JN, Cheema PS, Bahouth SW, Lloyd Hiler M (2003) Resistin release by human adipose tissue explants in primary culture. Biochem Biophys Res Commun 300(3):674–678

    Article  CAS  PubMed  Google Scholar 

  79. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C et al (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300(2):472–476

    Article  CAS  PubMed  Google Scholar 

  80. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C et al (2004) Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res 12(6):962–971

    Article  CAS  PubMed  Google Scholar 

  81. Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS (2003) Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 88(4):1730–1736

    Article  CAS  PubMed  Google Scholar 

  82. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145(5):2273–2282

    Article  CAS  PubMed  Google Scholar 

  83. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24(3):278–301

    Article  CAS  PubMed  Google Scholar 

  84. Das UN (2001) Is obesity an inflammatory condition? Nutrition 17(11–12):953–966

    Article  CAS  PubMed  Google Scholar 

  85. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124

    Article  CAS  PubMed  Google Scholar 

  86. Nelson LR, Bulun SE (2001) Estrogen production and action. J Am Acad Dermatol 45(3 Suppl):S116–S124

    Article  CAS  PubMed  Google Scholar 

  87. Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H et al (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143(6):2349–2356

    CAS  PubMed  Google Scholar 

  88. Benayahu D, Shur I, Ben-Eliyahu S (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79(3):407–415

    Article  CAS  PubMed  Google Scholar 

  89. Elbaz A, Rivas D, Duque G (2009) Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 10(6):747–755

    Article  CAS  PubMed  Google Scholar 

  90. Somjen D, Katzburg S, Kohen F, Gayer B, Posner GH, Yoles I et al (2011) The effects of native and synthetic estrogenic compounds as well as vitamin D less-calcemic analogs on adipocytes content in rat bone marrow. J Endocrinol Invest 34(2):106–110

    Article  CAS  PubMed  Google Scholar 

  91. Matthews CE, Fowke JH, Dai Q, Leon Bradlow H, Jin F, Shu XO et al (2004) Physical activity, body size, and estrogen metabolism in women. Cancer Causes Control 15(5):473–481

    Article  PubMed  Google Scholar 

  92. Napoli N, Vattikuti S, Yarramaneni J, Giri TK, Nekkalapu S, Qualls C et al (2012) Increased 2-hydroxylation of estrogen is associated with lower body fat and increased lean body mass in postmenopausal women. Maturitas 72(1):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179

    Article  CAS  PubMed  Google Scholar 

  94. Sakai N, Van Sweringen HL, Schuster R, Blanchard J, Burns JM, Tevar AD et al (2012) Receptor activator of nuclear factor-kappaB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatology 55(3):888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A et al (2013) Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19(3):358–363

    Article  CAS  PubMed  Google Scholar 

  96. Walus-Miarka M, Katra B, Fedak D, Czarnecka D, Miarka P, Wozniakiewicz E et al (2011) Osteoprotegerin is associated with markers of atherosclerosis and body fat mass in type 2 diabetes patients. Int J Cardiol 147(2):335–336

    Article  PubMed  Google Scholar 

  97. Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B et al (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169(6):2236–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grigoropoulou P, Eleftheriadou I, Zoupas C, Tentolouris N (2011) The role of the osteoprotegerin/RANKL/RANK system in diabetic vascular disease. Curr Med Chem 18(31):4813–4819

    Article  CAS  PubMed  Google Scholar 

  99. Venuraju SM, Yerramasu A, Corder R, Lahiri A (2010) Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol 55(19):2049–2061

    Article  CAS  PubMed  Google Scholar 

  100. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105(13):5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oz SG, Guven GS, Kilicarslan A, Calik N, Beyazit Y, Sozen T (2006) Evaluation of bone metabolism and bone mass in patients with type-2 diabetes mellitus. J Natl Med Assoc 98(10):1598–1604

    PubMed  PubMed Central  Google Scholar 

  103. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S et al (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22(1):187–194

    Article  CAS  PubMed  Google Scholar 

  104. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(1):45–49

    Article  CAS  PubMed  Google Scholar 

  105. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24(5):785–791

    Article  CAS  PubMed  Google Scholar 

  106. Zhou M, Ma X, Li H, Pan X, Tang J, Gao Y et al (2009) Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol 161(5):723–729

    Article  CAS  PubMed  Google Scholar 

  107. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94(3):827–832

    Article  CAS  PubMed  Google Scholar 

  108. Bouchonville M, Armamento-Villareal R, Shah K, Napoli N, Sinacore DR, Qualls C et al (2014) Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial. Int J Obes (Lond) 38(3):423–431

    Article  CAS  Google Scholar 

  109. Motyl KJ, McCabe LR, Schwartz AV. Bone and glucose metabolism: a two-way street. Arch Biochem Biophys. 2010;503(1):2–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Napoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Napoli, N., Pozzilli, P. (2015). Obesity and Glucose Metabolism. In: Lenzi, A., Migliaccio, S., Donini, L. (eds) Multidisciplinary Approach to Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-09045-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09045-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09044-3

  • Online ISBN: 978-3-319-09045-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics