Skip to main content

Dynamic Gaussian Graphical Models for Modelling Genomic Networks

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Abstract

After sequencing the entire DNA for various organisms, the challenge has become understanding the functional interrelatedness of the genome. Only by understanding the pathways for various complex diseases can we begin to make sense of any type of treatment. Unfortunately, decyphering the genomic network structure is an enormous task. Even with a small number of genes the number of possible networks is very large. This problem becomes even more difficult, when we consider dynamical networks. We consider the problem of estimating a sparse dynamic Gaussian graphical model with \(L_1\) penalized maximum likelihood of structured precision matrix. The structure can consist of specific time dynamics, known presence or absence of links in the graphical model or equality constraints on the parameters. The model is defined on the basis of partial correlations, which results in a specific class precision matrices. A priori \(L_1\) penalized maximum likelihood estimation in this class is extremely difficult, because of the above mentioned constraints, the computational complexity of the \(L_1\) constraint on the side of the usual positive-definite constraint. The implementation is non-trivial, but we show that the computation can be done effectively by taking advantage of an efficient maximum determinant algorithm developed in convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lauritzen, S.: Graphical Models, vol. 17. Oxford University Press, USA (1996)

    Google Scholar 

  2. Dempster, A.: Covariance selection. Biometrics 28, 157–175 (1972)

    Article  Google Scholar 

  3. Cox, D., Wermuth, N.: Multivariate Dependencies. Chapman and Hall/CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  4. Whittaker, J.: Graphical Models in Applied Multivariate Statistics, vol. 16. Wiley, New York (1990)

    MATH  Google Scholar 

  5. Edwards, D.: Introduction to Graphical Modelling. Springer, New York (2000)

    Book  MATH  Google Scholar 

  6. Drton, M., Perlman, M.: Model selection for Gaussian concentration graphs. Biometrika 91(3), 591–602 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Meinshausen, N., Bühlmann, P.: High-dimensional graphs with the Lasso. Ann. Statist. 34, 1436–1462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24(6), 2350–2383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432 (2007)

    Article  Google Scholar 

  10. Boyd, S., Vanderberghe, L.: Convex optimization. Cambridge Univ. Pr., New York (2004)

    Book  MATH  Google Scholar 

  11. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: On the implementation and usage of \(SDPT3\) - a Matlab software package for semidefinite quadratic linear programming, version 4.0. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166, pp. 715–754. Springer, NewYork (2006)

    Chapter  Google Scholar 

  12. Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D., Falciani, F.: Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9), 1361–1372 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abbruzzo, A., Di Serio, C., Wit, E. (2014). Dynamic Gaussian Graphical Models for Modelling Genomic Networks. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics