Skip to main content

The Grossone Methodology Perspective on Turing Machines

  • Chapter
Automata, Universality, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 12))

Abstract

This chapter discusses how the mathematical language used to describe and to observe automatic computations influences the accuracy of the obtained results. The chapter presents results obtained by describing and observing different kinds ofTuringmachines (single andmulti-tape, deterministic and non-deterministic) through the lens of a new mathematical language named Grossone. This emerging language is strongly based on threemethodological ideas borrowed from Physics and applied toMathematics: the distinction between the object (indeedmathematical object) of an observation and the instrument used for this observation; interrelations holding between the object and the tool used for the observation; the accuracy of the observation determined by the tool. In the chapter, the new results are compared to those achievable by using traditional languages. It is shown that both languages do not contradict each other but observe and describe the same object (Turingmachines) but with different accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausiello, G., D’Amore, F., Gambosi, G.: Linguaggi, modelli, complessità, 2nd edn. Franco Angeli Editore, Milan (2006)

    Google Scholar 

  2. Benci, V., Di Nasso, M.: Numerosities of labeled sets: a new way of counting. Advances in Mathematics 173, 50–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cantor, G.: Contributions to the founding of the theory of transfinite numbers. Dover Publications, New York (1955)

    Google Scholar 

  4. Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 345–363 (1936)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.H., Guy, R.K.: The Book of Numbers. Springer, New York (1996)

    Book  MATH  Google Scholar 

  6. Barry Cooper, S.: Computability Theory. Chapman Hall/CRC (2003)

    Google Scholar 

  7. De Cosmis, S., De Leone, R.: The use of Grossone in mathematical programming and operations research. Applied Mathematics and Computation 218(16), 8029–8038 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. D’Alotto, L.: Cellular automata using infinite computations. Applied Mathematics and Computation 218(16), 8077–8082 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis, M.: Computability & Unsolvability. Dover Publications, New York (1985)

    Google Scholar 

  10. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  Google Scholar 

  11. Gordon, P.: Numerical cognition without words: Evidence from Amazonia. Science 306, 496–499 (2004)

    Article  Google Scholar 

  12. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation, 1st edn. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  13. Iudin, D.I.: Ya.D. Sergeyev, and M. Hayakawa. Interpretation of percolation in terms of infinity computations. Applied Mathematics and Computation 218(16), 8099–8111 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kleene, S.C.: Introduction to metamathematics. D. Van Nostrand, New York (1952)

    MATH  Google Scholar 

  15. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176 (1953)

    MATH  Google Scholar 

  16. Kolmogorov, A.N., Uspensky, V.A.: On the definition of algorithm. Uspekhi Mat. Nauk 13(4), 3–28 (1958)

    MATH  Google Scholar 

  17. Leibniz, G.W., Child, J.M.: The Early Mathematical Manuscripts of Leibniz. Dover Publications, New York (2005)

    Google Scholar 

  18. Levi-Civita, T.: Sui numeri transfiniti. Rend. Acc. Lincei, Series 5a 113, 7–91 (1898)

    Google Scholar 

  19. Lolli, G.: Metamathematical investigations on the theory of Grossone. To appear in Applied Mathematics and Computation

    Google Scholar 

  20. Lolli, G.: Infinitesimals and infinites in the history of mathematics: A brief survey. Applied Mathematics and Computation 218(16), 7979–7988 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Margenstern, M.: Using Grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers, Ultrametric Analysis and Applications 3(3), 196–204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Margenstern, M.: An application of Grossone to the study of a family of tilings of the hyperbolic plane. Applied Mathematics and Computation 218(16), 8005–8018 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Markov Jr., A.A., Nagorny, N.M.: Theory of Algorithms, 2nd edn. FAZIS, Moscow (1996)

    MATH  Google Scholar 

  24. Mayberry, J.P.: The Foundations of Mathematics in the Theory of Sets. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  25. Newton, I.: Method of Fluxions. 1671

    Google Scholar 

  26. Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetic in an amazonian indigene group. Science 306, 499–503 (2004)

    Article  Google Scholar 

  27. Post, E.: Finite combinatory processes – formulation 1. Journal of Symbolic Logic 1, 103–105 (1936)

    Article  Google Scholar 

  28. Robinson, A.: Non-standard Analysis. Princeton Univ. Press, Princeton (1996)

    MATH  Google Scholar 

  29. Rosinger, E.E.: Microscopes and telescopes for theoretical physics: How rich locally and large globally is the geometric straight line? Prespacetime Journal 2(4), 601–624 (2011)

    Google Scholar 

  30. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS (2003)

    MATH  Google Scholar 

  31. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons & Fractals 33(1), 50–75 (2007)

    Article  Google Scholar 

  32. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos, Solitons & Fractals 42(5), 3042–3046 (2009)

    Article  Google Scholar 

  34. Sergeyev, Y.D.: Numerical computations and mathematical modelling with infinite and infinitesimal numbers. Journal of Applied Mathematics and Computing 29, 177–195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Analysis Series A: Theory, Methods & Applications 71(12), e1688–e1707 (2009)

    Article  MathSciNet  Google Scholar 

  36. Sergeyev, Y.D.: Counting systems and the First Hilbert problem. Nonlinear Analysis Series A: Theory, Methods & Applications 72(3-4), 1701–1708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sergeyev, Y.D.: Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 68(2), 95–113 (2010)

    MATH  MathSciNet  Google Scholar 

  38. Sergeyev, Y.D.: Higher order numerical differentiation on the infinity computer. Optimization Letters 5(4), 575–585 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sergeyev, Y.D.: On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers, Ultrametric Analysis and Applications 3(2), 129–148 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011)

    MATH  MathSciNet  Google Scholar 

  41. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer. Applied Mathematics and Computation 219(22), 10668–10681 (2013)

    Article  MathSciNet  Google Scholar 

  42. Sergeyev, Y.D., Garro, A.: Observability of Turing machines: A refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    MATH  MathSciNet  Google Scholar 

  43. Sergeyev, Y.D., Garro, A.: Single-tape and Multi-tape Turing Machines through the lens of the Grossone methodology. The Journal of Supercomputing 65(2), 645–663 (2013)

    Article  Google Scholar 

  44. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proceedings of London Mathematical Society, Series 2 42, 230–265 (1936-1937)

    Article  Google Scholar 

  45. Vita, M.C., De Bartolo, S., Fallico, C., Veltri, M.: Usage of infinitesimals in the Menger’s Sponge model of porosity. Applied Mathematics and Computation 218(16), 8187–8196 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wallis, J.: Arithmetica infinitorum (1656)

    Google Scholar 

  47. Zhigljavsky, A.A.: Computing sums of conditionally convergent and divergent series using the concept of Grossone. Applied Mathematics and Computation 218(16), 8064–8076 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Applied Mathematics and Computation 218(16), 8131–8136 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sergeyev, Y.D., Garro, A. (2015). The Grossone Methodology Perspective on Turing Machines. In: Adamatzky, A. (eds) Automata, Universality, Computation. Emergence, Complexity and Computation, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09039-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09039-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09038-2

  • Online ISBN: 978-3-319-09039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics