Advertisement

Constructing Reversible Turing Machines by Reversible Logic Element with Memory

  • Kenichi MoritaEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

A reversible logic element is a primitive for composing reversible computing machines. There are two kinds of such elements, i.e., one without memory, which is commonly called a reversible logic gate, and one with memory. It is known that, in reversible computing, a reversible logic element with memory is useful as well as a reversible logic gate, since reversible computing machines can be constructed simply using such a type of elements. A rotary element (RE) is a typical instance of a reversible logic element with 1-bit memory, whose operations can be easily understood by an intuitive interpretation. In this survey, we discuss how RE is implemented in an idealized reversible physical system, and how reversible Turing machines (RTMs) can be constructed from REs. In particular, we give a new simpler construction method of RTMs than the previous one.

Keywords

Memory Cell Reversible Logic Read Operation Input Symbol Output Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A.: Collision-Based Computing. Springer (2002), doi:10.1007/978-1-4471-0129-1Google Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973), doi:10.1147/rd.176.0525CrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theoret. Phys. 21, 905–940 (1982), doi:10.1007/BF02084158CrossRefGoogle Scholar
  4. 4.
    Büning, H., Priese, L.: Universal asynchronous iterative arrays of Mealy automata. Acta Informatica 13, 269–285 (1980), doi:10.1007/BF00288646CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982), doi:10.1007/BF01857727CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Keller, R.: Towards a theory of universal speed-independent modules. IEEE Trans. Computers C-23, 21–33 (1974), doi:10.1109/T-C.1974.223773CrossRefGoogle Scholar
  7. 7.
    Lecerf, Y.: Machines de Turing réversibles — récursive insolubilité en n ∈ N de l’équation u = θ n u, où θ est un isomorphisme de codes. Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 257, 2597–2600 (1963)MathSciNetGoogle Scholar
  8. 8.
    Lee, J., Yang, R., Morita, K.: Design of 1-tape 2-symbol reversible Turing machines based on reversible logic elements. Theoret. Comput. Sci. 460, 78–88 (2012), doi:10.1016/j.tcs.2012.07.027CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. Theoret. Comput. Sci. 231, 217–251 (2000), doi:10.1016/S0304-3975(99)00102-4CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Morita, K.: A new universal logic element for reversible computing. In: Martin-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing, pp. 285–294. Taylor & Francis, London (2003), doi:10.1201/9780203009642.ch28CrossRefGoogle Scholar
  12. 12.
    Morita, K.: Reversible computing and cellular automata — A survey. Theoret. Comput. Sci. 395, 101–131 (2008), doi:10.1016/j.tcs.2008.01.041CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Morita, K.: Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory. Hiroshima University Institutional Repository (2010), http://ir.lib.hiroshima-u.ac.jp/00029224
  14. 14.
    Morita, K.: Reversible Computing. Kindai Kagaku-sha Co., Ltd., Tokyo (2012) ISBN 978-4-7649-0422-4 (in Japanese)Google Scholar
  15. 15.
    Morita, K., Ogiro, T., Alhazov, A., Tanizawa, T.: Non-degenerate 2-state reversible logic elements with three or more symbols are all universal. J. Multiple-Valued Logic and Soft Computing 18, 37–54 (2012)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Morita, K., Ogiro, T., Tanaka, K., Kato, H.: Classification and universality of reversible logic elements with one-bit memory. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 245–256. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Mukai, Y., Morita, K.: Realizing reversible logic elements with memory in the billiard ball model. Int. J. of Unconventional Computing 8(1), 47–59 (2012)Google Scholar
  18. 18.
    Mukai, Y., Ogiro, T., Morita, K.: Universality problems on reversible logic elements with 1-bit memory. Int. J. Unconventional Computing (to appear)Google Scholar
  19. 19.
    Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  20. 20.
    Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 12–23 (1981), doi:10.1007/BF01752388CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations