Some Reflections on Mathematics and Its Relation to Computer Science

  • Liesbeth De MolEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)


This paper resulted from a talk I gave at Machines, Computations and Universality 2013 in Zürich and I am very much indebted to the organizers and the participants of this conference for a very fruitful discussion. I am particularly grateful to Maurice Margenstern who, since he was a reader of my PhD, has given me several useful advices related to my work and has often motivated me for inquiring further into problems of decidability and undecidability in the context of tag systems, and more generally, for developing my thoughts on experimental mathematics and computer science


Computer Science Mathematical Knowledge Turing Machine Color Theorem Electronic Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arden, B.W. (ed.): What can be automated? The computer science and engineering study. MIT Press (1980)Google Scholar
  2. 2.
    Bonsall, F.F.: A down-to-earth view of mathematics. The American Mathematical Monthly 89(1), 8–15 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Borwein, J.: Implications of experimental mathematics for the philosophy of mathematics. In: Gold, B., Simons, R.A. (eds.) Proof and Other Dilemmas: Mathematics and Philosophy, pp. 33–60. Mathematical Association of America (2008)Google Scholar
  4. 4.
    Brady, A.H.: The determination of the value of Radó’s noncomputable function σ for four-state Turing machines. Mathematics of Computation 40(162), 647–665 (1983)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Braverman, M., Cook, S.: Computing over the reals: Foundations for scientific computing. Notices of the AMS 53(3), 318–329 (2006)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bullynck, M., De Mol, L.: Setting-up early computer programs: D. H. Lehmer’s ENIAC computation. Archive for Mathematical Logic 49, 123–146 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Conway, J.H., Goodman-Strauss, C., Sloane, N.J.A.: Recent progress in Sphere Packing. Contemporary Mathematics (to appear),
  8. 8.
    Clenshaw, C.: Polynomial approximations to elementary functions. Mathematical Tabels and Other Aids to Computation 8(47), 143–147 (1954)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Corry, L.: Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850–1960) and beyond. Archive for the History of Exact Sciences 62, 393–455 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Denning, P.J., Comer, D.E., et al.: Computing as a discipline. Communications of the ACM 32(1), 9–23 (1989)CrossRefGoogle Scholar
  11. 11.
    Denning, P.J.: Computing as a natural science. Communications of the ACM 50(7), 13–18 (2007)CrossRefGoogle Scholar
  12. 12.
    De Mol, L.: The proof is in the process. A preamble for a philosophy of computer-assisted mathematics. In: Galavotti, M.-C., et al. (eds.) New Directions in the Philosophy of Science, pp. 15–34. Springer (in print)Google Scholar
  13. 13.
    Dijkstra, E.W.: On the design of Machine Independent Programming Languages, Report MR34. Stichting Mathematisch Centrum, Amsterdam (1961)Google Scholar
  14. 14.
    Dijkstra, E.W.: Programming as a discipline of mathematical nature. The American Mathematical Monthly 81(6), 608–612 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dijkstra, E.W.: How computing science created a new mathematical style, EWD 1073 (1990)Google Scholar
  16. 16.
    Gandy, R.: The confluence of ideas in 1936. In: Herken, R. (ed.) The Universal Turing Machine, pp. 55–111. Oxford University Press, Oxford (1988)Google Scholar
  17. 17.
    Goldstine, H.H., von Neumann, J.: Planning and coding of problems for an electronic computing instrument, vol. 2, part I, II and III (1947-1948), Report prepared for U. S. Army Ord. Dept. under Contract W-36-034-ORD-7481Google Scholar
  18. 18.
    Gonthier, G.: Formal proof – The four color theorem. Notices of the AMS 55(11), 1382–1393 (2008)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Hales, T., Harrison, J., et al.: A revision of the proof of the Kepler conjecture. Discrete and Computational Geometry 44, 1–34 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hamming, R.W.: Impact of Computers. The American Mathematical Monthly 72, 1–7 (1965)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Hamming, R.W.: One man’s view of computer science. Journal of the ACM 16, 3–12 (1969)CrossRefGoogle Scholar
  22. 22.
    Hartree, D.R.: Calculating instruments and machines. University of Illinois Press (1949)Google Scholar
  23. 23.
    Hilbert, D.: Naturerkennen und Logik. Naturwissen 18, 959–963 (1930)CrossRefzbMATHGoogle Scholar
  24. 24.
    Knuth, D.: Computer science and its relation to mathematics. The American Mathematical Monthly 81(4), 323–343 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Knuth, D.: Computer programming as an art. Communications of the ACM 17(12), 667–673 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Knuth, D.: Algorithmic thinking and mathematical thinking. The American Mathematical Monthly 92(3), 170–181 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Knuth, D.: Algorithmic themes. In: Duren, P., et al. (eds.) A Century of Mathematics in America, Part I, pp. 439–445. American Mathematical Society (1988)Google Scholar
  28. 28.
    Lehmer, D.H.: Mathematical methods in large scale computing units. In: Proceedings of Second Symposium on Large-Scale Digital Calculating Machinery, pp. 141–146. Harvard University Press, Cambridge (1949, 1951)Google Scholar
  29. 29.
    Lehmer, D.H.: Mechanized mathematics. Bulletin of the American Mathematical Society 72, 739–750 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    MacKenzie, D.: Slaying the Kraken: The sociohistory of a mathematical proof. Social Studies of Science 29(1), 7–60 (1999)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Mancosu, P., Zach, R., Badesa, C.: The Development of Mathematical Logic from Russell to Tarski, 1900 - 1935. In: Haaparanta, L. (ed.) The Development of Modern Logic, pp. 318–470. Oxford University Press, New York (2009)CrossRefGoogle Scholar
  32. 32.
    Margenstern, M.: Comment. In: Zenil, H. (ed.) A Computable Universe, pp. 645–646. World Scientific, Singapore (2012)Google Scholar
  33. 33.
    Post, E.: Absolutely unsolvable problems and relatively undecidable propositions — Account of an anticipation. In: Davis, M. (ed.) The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, New York (1965); Corrected Republication, pp. 340–433. Dover Publications, New York (2004)Google Scholar
  34. 34.
  35. 35.
    Ulam, S., von Neumann, J.: Bulletin of the American Mathematical Society 64, 1–49 (1958)Google Scholar
  36. 36.
    von Neumann, J.: The Mathematician. In: Heywood, R.B. (ed.) The Works of the Mind, pp. 180–196. University of Chicago Press (1947)Google Scholar
  37. 37.
    von Neumann, J.: Electronic Methods of Computation. Bulletin of the American Academy of Arts and Sciences 1, 2–4 (1948)CrossRefGoogle Scholar
  38. 38.
    Wegner, P.: Research paradigms in computer science. In: Proceedings of the 2nd international conference on Software Engineering, ICSE 1976, pp. 322–330 (1976)Google Scholar
  39. 39.
    Wolfram, S.: A new kind of science. Wolfram Media, Champaign (2002)Google Scholar
  40. 40.
    Zeilberger, D.: Theorem for a price. Tomorrow’s semi-rigorous mathematical culture. The Mathematical Intelligencer 16(4), 11–18 (1994)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre Nationale de la Recherche Scientifique, UMR SavoirsTextes Langage, Université de Lille 3Villeneuve-d’AscqFrance

Personalised recommendations