Advertisement

DC Programming and DCA for Challenging Problems in Bioinformatics and Computational Biology

  • Le Thi Hoai AnEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

Nonconvex optimization is a powerful tool in bioinformatics and computational biology. As an innovative approach to nonconvex programming, Difference of Convex functions (DC) programming and DC Algorithms (DCA) have proved to be efficient for several problems in computational biology. The objective of this chapter is to show that grand challenge problems in bioinformatics and computational biology can be modeled as DC programs and solved by DCA based algorithms. We offer the community of researchers in computational biology promising approaches in a unified DC programming framework to tackle challenging biological problems such as Multiple Alignment of Sequence (MSA), Molecular conformation and Phylogenetic tree reconstruction.

Keywords

Polyhedral Convex Distance Geometry Mixed Graph Phylogenetic Tree Reconstruction Distance Geometry Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for 0-1 quadratic programming problems. Management Science 32(10), 1274–1290 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arthanari, T.S., Le Thi, H.A.: New formulations of the multiple sequence alignment problem. Optimization Letter 5(1), 27–40 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barron, C., Gomez, S., Romero, D.: Lower Energy Icosahedral Atomic Cluster with Incomplete Core. Applied Mathematics Letters 10(5), 25–28 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barron, C., Gomez, S., Romero, D., Saavedra, A.: A Genetic Algorithm for Lennard-Jones Atomic clusters. Applied Mathematics Letters 12, 85–90 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for unconstrained quadratic 0-1 problem. Math. Programming 109(1, Ser.A), 55–68 (2007)Google Scholar
  6. 6.
    Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press (1953)Google Scholar
  7. 7.
    Cai, W., Jiang, H., Shao, X.: Global optimization of Lennard-Jones clusters by a parallel fast annealing evolutionary algorithm. Journal of Chemical Information and Computer Sciences 42(5), 1099–1103 (2002)Google Scholar
  8. 8.
    Caprara, A.: Constrained 0-1 quadratic programming: Basic approaches and extensions. European Journal of Operational Research 187, 494–1503 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Carr, R.D., Lancia, G.: Compact vs. Exponential-size LP relaxations. Operations Research Letters 30, 57–65 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 296–310. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cripen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons (1988)Google Scholar
  12. 12.
    Demyanov, V.F., Vasilev, L.V.: Nondifferentiable optimization. Optimization Software, Inc. Publications Division, New York (1985)Google Scholar
  13. 13.
    Deaven, D.M., Tit, N., Morris, J.M., Ho, K.M.: Structural optimization of Lennard-Jones clusters by a genetic algorithm. Chemical Physics Letters 256(1), 195–200 (1996)CrossRefGoogle Scholar
  14. 14.
    Deng, Y., Rivera, C.: Approximate energy minimization for large Lennard-Jones clusters. Journal of Global Optimization 16(4), 325–341 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Doye. J.P.K.: Thermodynamics and the global optimization of Lennard-Jones clusters. Journal of Chemical Physics 109(19), 8143–8153 (1998)Google Scholar
  16. 16.
    Ellis, S.E., Nayakkankuppam, M.V.: Phylogenetic analysis via DC programming. Department of Mathematics and Statistics (preprint)Google Scholar
  17. 17.
    Greenberg, H.J.: Integer Quadratic Programming Models in Computational biology. Operations Research Proceedings 2006, 83–95 (2007)Google Scholar
  18. 18.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997)Google Scholar
  19. 19.
    Havel, T.F.: An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56, 43–78 (1991)CrossRefGoogle Scholar
  20. 20.
    Hiriart Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993)Google Scholar
  21. 21.
    Huang, H.X., Pardalos, P.M., Shen, Z.J.: Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem. Journal of Global Optimization 22(1-4), 97–118 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Huelsenbeck, J.P.: Performance of phylogenetic methods in simulation. Systematic Biology 44, C17–C48 (1995)Google Scholar
  23. 23.
    Jiang, H., Cai, W., Shao, X.: New lowest energy sequence of marksf decahedral Lennard-Jones clusters containing up to 10,000 atoms. Journal of Physical Chemistry A 107(21), 4238–4243 (2003)CrossRefGoogle Scholar
  24. 24.
    Kalantari, B., Rosen, J.B.: Algorithm for global minimization of linearly constrained concave quadratic functions. Mathematics of Operations Research 12, 544–561 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment. In: Proceedings of the 4th Symposium on Combinatorial Pattern Matching, pp. 106–119 (1993)Google Scholar
  26. 26.
    Kececioglu, J.D.: Exact and Approximation Algorithms for DNA Sequence Reconstruction. PhD thesis, University of Arizona (1991)Google Scholar
  27. 27.
    Kececioglu, J.D., Lenhof, H.P., Mehlhorn, K., Mutzel, P., Reinert, K., Vingron, M.: A polyhedral approach to sequence alignment problems. Discrete Applied Mathematics 104, 143–186 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Le Thi, H.A.: DC Programming and DCA, http://lita.sciences.univ-metz.fr/~lethi
  29. 29.
    Le Thi, H.A.: Phylogenetic tree reconstruction by a DCA based algorithm. Research Report, LITA, University of Lorraine, 1–27 (2013)Google Scholar
  30. 30.
    Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Numerical solution for optimization over the efficient set by d.c. optimization algorithm. Operations Research Letters 19, 117–128 (1996)Google Scholar
  31. 31.
    Le Thi, H.A., Pham Dinh, T.: D.C. programming approach for large scale molecular optimization via the general distance geometry problem. In: Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches. pp. 301–339. Kluwer Academic Publishers (2000)Google Scholar
  32. 32.
    Le Thi, H.A., Pham Dinh, T.: A continuous approach for large-scale constrained quadratic zero-one programming. Optimization (In honor of Professor ELSTER, Founder of the Journal Optimization) 50(1-2), 93–120 (2001)zbMATHGoogle Scholar
  33. 33.
    Le Thi, H.A., Pham Dinh, T.: Large Scale Molecular Optimization from distance matrices by a d.c. optimization approach. SIAM Journal on Optimization 14(1), 77–114 (2003)Google Scholar
  34. 34.
    Le Thi, H.A., Pham Dinh, T.: A new algorithm for solving large scale molecular distance geometry problems. In: Applied Optimization: Special Issue “HighPerformance Algorithms and Software for Nonlinear Optimization”, pp. 279–296. Kluwer Academic Publishers (2003)Google Scholar
  35. 35.
    Le Thi, H.A.: Solving large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and d.c. programming. Journal of Global Optimization 27(4), 375–397 (2003)Google Scholar
  36. 36.
    Le Thi, H.A., Pham Dinh, T.: The DC programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research 133, 23–46 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Le Thi, H.A., Pham Dinh, T.: A two phases DCA based algorithm for solving the Lennard-Jones problem. Research Report, LITA, University of Metz, 1–36 (2011)Google Scholar
  38. 38.
    Le Thi, H.A., Pham Dinh, T.: Minimizing the Morse potential energy function by a DC programming approach. Research Report, LITA, University of Lorraine, 1–30 (2012)Google Scholar
  39. 39.
    Le Thi, H.A., Pham Dinh, T.: DC programming approaches for Distance Geometry problems. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications. Springer (2013)Google Scholar
  40. 40.
    Le Thi, H.A., Pham Dinh, T., Belghiti, T.: DCA based algorithms for Multiple Sequence Alignment (MSA). Central European Journal of Operations Research, 1–24 (2013)Google Scholar
  41. 41.
    Le Thi, H.A., Pham Dinh, T.: DC programming and DCA for minimizing Lennard-Jones potential energy (submitted, 2014)Google Scholar
  42. 42.
    Lenhof, H.P., Retnert, K., Vingron, M.: A Polyhedral Approach to RNA Sequence Structure Alignmen. Journal of Computational Biology 5(3), 517–530 (1998)CrossRefGoogle Scholar
  43. 43.
    Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Computational Optimization and Applications 26(2), 173–190 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Myers, E., Miller, W.: Optimal alignments in linear space. Computer Applications in the Biosciences 4(1), 11–17 (1988)Google Scholar
  45. 45.
    Notredame, C.: Recent progresses in multiple sequence alignment: a survey. Pharmacogenomics 3(1), 131–144 (2002)CrossRefGoogle Scholar
  46. 46.
    Notredame, C., Higgins, D.G., Heringa, J.: T-COFFEE: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 392, 205–217 (2000)CrossRefGoogle Scholar
  47. 47.
    Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications, Acta Mathematica Vietnamica (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday) 22, 289–355 (1997)Google Scholar
  49. 49.
    Pham Dinh, T., Le Thi, H.A.: D.C. optimization algorithms for solving the trust region subproblem. SIAM J. Optimization 8, 476–505 (1998)Google Scholar
  50. 50.
    Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Nguyen, N.-T., Le-Thi, H.A. (eds.) TCCI 2013. LNCS, vol. 8342, pp. 1–37. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  51. 51.
    Pham Dinh, T., Nguyen, C.N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Global Optimization 48(4), 595–632 (2010)CrossRefzbMATHGoogle Scholar
  52. 52.
    Prestwich, S., Higgins, D., O’Sullivan, O.: Pseudo-Boolean Multiple Sequence Alignment. Technical Report,TR-03-2003,, Cork Constraint Computation Centre, University College, Cork, Ireland (2003), http://www.4c.ucc.ie/web/techreps.jsp
  53. 53.
    Oskolkov, N.N., Jakob, B.: A Lennard-Jones-like perspective on first order transitions in biological helices. Central European Journal of Physics 11(3), 357–362 (2013)CrossRefGoogle Scholar
  54. 54.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  55. 55.
    Thompson, J.D., Plewniak, F., Poch, O.: BAliBASE: A benchmark alignments database for the evaluation of multiple sequence alignment programs. Bioinformatics 15, 87–88 (1999)CrossRefGoogle Scholar
  56. 56.
    Rajasekaran, S., Nick, H., Pardalos, P.M., Sahni, S., Shaw, G.: Efficient Algorithms for local alignment search. Journal of Combinatorial Optimization 5(1), 117–124 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Rajasekaran, S., Hu, Y., Luo, J., Nick, H., Pardalos, P.M., Sahni, S., Shaw, G.: Efficient Algorithms for similarity alignment search. Journal of Combinatorial Optimization 5(1), 117–124 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Reinert, K., Lenhof, H., Mutzel, P., Mehlhorn, K., Kececioglu, J.D.: A branch-and-cut algorithm for multiple sequence alignment. In: RECOMB, pp. 241–250 (1997)Google Scholar
  59. 59.
    Rockafellar, R.T.: Convex Analysis. Princeton University, Princeton (1970)Google Scholar
  60. 60.
    Saxe, J.B.: Embeddability of weighted Graphs in k-space is strongly NP-hard. In: Proc. 17 Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  61. 61.
    Searls, D.: Grand Challenges in Computational Biology. In: Salzberg, S., Searls, D., Kasif, S. (eds.) Computational Methods in Molecular Biology. Elsevier Science (1998)Google Scholar
  62. 62.
    Shashi, K.D., Katiyar, V.K.: Global Optimization of Lennard-Jones Potential Using Newly Developed Real Coded Genetic Algorithms. In: Proceedings of IEEE International Conference on Communication Systems and Network Technologies, pp. 614–618 (2011)Google Scholar
  63. 63.
    Xiang, Y., Cheng, L., Cai, W., Shao, X.: Structural distribution of Lennard-Jones clusters containing 562 to 1000 atoms. Journal of Physical Chemistry A 108(44), 9516–9520 (2004)CrossRefGoogle Scholar
  64. 64.
    Xue, G.L.: Minimum Inter-Particle Distance at Global Minimizers of Lennard-Jones Clusters. Journal of Global Optimization 11, 83–90 (1997)CrossRefzbMATHGoogle Scholar
  65. 65.
    Vavasis, S.A.: Nonlinear Optimization, Complexity Issues, Oxford University Press (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Theoretical and Applied Computer Science (LITA EA 3097)University of LorraineMetzFrance

Personalised recommendations