Broadcasting Automata and Patterns on ℤ2

  • Thomas NicksonEmail author
  • Igor Potapov
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)


The recently introduced Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood sequences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for the broadcasting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to automata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a variety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An exploration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and generation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are exploredwith a connection to broadcasting sequences and approximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions.


Line Segment Cellular Automaton Cellular Automaton Aggregation Function Chain Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Applied Mathematics 156(2), 2381–2399 (2008),, doi:10.1016/j.dam.2007.10.022, ISSN 0166-218X
  2. 2.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977),, doi:10.1145/359423.359432, ISSN 0001-0782
  3. 3.
    Chatterji, B.N., Das, P.P., Chakrabarti, P.P.: Generalized distances in digital geometry. Information Sciences 42, 51–67 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Conway, J.H.: Regular Algebra and Finite Machines. Dover Books on Mathematics Series. Dover Publications (2012),, ISBN 9780486485836
  5. 5.
    Duncan, R.: A survey of parallel computer architectures. Computer 23(2), 5–16 (1990), doi:10.1109/2.44900, ISSN 0018-9162Google Scholar
  6. 6.
    Farkas, S., Bajk, J., Nagy, B.: Approximating the Euclidean circle in the square grid using neighbourhood sequences. Pure Math. Appl (PU.M.A.) 17, 309–322 (2006), ISSN 1218-4586Google Scholar
  7. 7.
    Farkas, S., Bajak, J., Nagy, B.: Approximating the Euclidean circle in the square grid using neighbourhood sequences. ArXiv e-prints (June 2010)Google Scholar
  8. 8.
    Feng, T.: A survey of interconnection networks. Computer 14(12), 12–27 (1981), doi:10.1109/C-M.1981.220290, ISSN 0018-9162Google Scholar
  9. 9.
    Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman lectures on physics. Addison-Wesley World Student Series, vol. 1. Addison-Wesley Pub. Co. (1963),
  10. 10.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, EC-10, 260–268 (1961), doi:10.1109/TEC.1961.5219197, ISSN 0367-9950Google Scholar
  11. 11.
    Gerhardt, M., Schuster, H., Tyson, J.J.: A cellular automaton model of excitable media: Ii. curvature, dispersion, rotating waves and meandering waves. Physica D: Nonlinear Phenomena 46(3), 392–415 (1990),, doi:10.1016/0167-2789(90)90101-T, ISSN 0167-2789
  12. 12.
    Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen, T., Luosto, K., Suomela, J., Virtema, J.: Weak models of distributed computing, with connections to modal logic. CoRR, abs/1205.2051 (2012)Google Scholar
  13. 13.
    Hajdu, A.: Geometry of neighbourhood sequences. Pattern Recognition Letters 24(15), 2597–2606 (2003)CrossRefGoogle Scholar
  14. 14.
    Hajdu, A., Hajdu, L.: Approximating the euclidean distance using non-periodic neighbourhood sequences. Discrete Mathematics 283(1-3), 101–111 (2004),, doi:10.1016/j.disc.2003.12.016, ISSN 0012-365X
  15. 15.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005),, doi:10.1016/j.tcs.2004.11.021, ISSN 0304-3975
  16. 16.
    Lee, G., Chong, N.Y.: A geometric approach to deploying robot swarms. Annals of Mathematics and Artificial Intelligence 52 257–280 (2008),, doi: 10.1007/s10472-009-9125-x, ISSN 1012-2443
  17. 17.
    Lee, G., Yoon, S.: A mobile sensor network forming concentric circles through local interaction and consensus building. Journal of Robotics and Mechatronics 21, 469–477 (2009), ISSN 1883-8049Google Scholar
  18. 18.
    Linz, P.: An Introduction to Formal Languages and Automata. Theory of Computation Series. Jones and Bartlett (2001),, ISBN 9780763714222
  19. 19.
    Martin, R., Nickson, T., Potapov, I.: Geometric computations by broadcasting automata on the integer grid. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 138–151. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Martin, R., Nickson, T., Potapov, I.: Geometric computations by broadcasting automata. Natural Computing, 1–13 (2012),, doi:10.1007/s11047-012-9330-0, ISSN 1567-7818
  21. 21.
    Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer (2002), ISBN 9780387953731
  22. 22.
    Mazoyer, J.: An overview of the firing squad synchronization problem. In: Choffrut, C. (ed.) Automata Networks. LNCS, vol. 316, pp. 82–94. Springer, Heidelberg (1988),, doi:10.1007/3-540-19444-4_16, ISBN 978-3-540-19444-6
  23. 23.
    Nagy, B.: Metric and non-metric distances on zn by generalized neighbourhood sequences. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, ISPA 2005, pp. 215–220 (September 2005), doi:10.1109/ISPA.2005.195412Google Scholar
  24. 24.
    Nagy, B., Strand, R.: Approximating euclidean distance using distances based on neighbourhood sequences in non-standard three-dimensional grids. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 89–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. In: Encyclopedia of Mathematics and Its Applications. Cambridge University Press (1993),
  26. 26.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (1995),; Numbers that are the sum of 2 nonnegative squares
  27. 27.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28, 1347–1363 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Thiaville, A.: Extensions of the geometric solution of the two dimensional coherent magnetization rotation model. Journal of Magnetism and Magnetic Materials 182(1-2), 5–18 (1998),, doi:10.1016/S0304-8853(97)01014-7, ISSN 0304-8853
  29. 29.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena 10(1-2), 1–35 (1984),, doi:10.1016/0167-2789(84)90245-8, ISSN 0167-2789
  30. 30.
    Yates, R.C.: Curves and their properties. Classics in mathematics education. National Council of Teachers of Mathematics (1974),

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Kennedy Tower, Royal Edinburgh HospitalThe University of EdinburghEdinburghUK
  2. 2.University of LiverpoolLiverpoolUK

Personalised recommendations