Skip to main content

Linear Cellular Automata and Decidability

  • Chapter
Automata, Universality, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 12))

  • 737 Accesses

Abstract

We delineate the boundary between decidability and undecidability in the context of one-dimensional cellular automata. The key tool for decidability results are automata-theoretic methods, and in particular decision algorithms for automatic structures, that are inherently limited to dealing with a bounded number of steps in the evolution of a configuration. Undecidability and hardness, on the other hand, are closely related to the full orbit problem: does a given configuration appear in the orbit of another?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, London (1994)

    Google Scholar 

  2. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. Journal of Computer and Systems Sciences 6, 448–464 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avigad, J., Harrison, J.: Formally verified mathematics. Comm. ACM 57(4), 66–75 (2014)

    Article  Google Scholar 

  4. Bartholdi, L., Silva, P.V.: Groups defined by automata. CoRR, abs/1012.1531 (2010)

    Google Scholar 

  5. Blumensath, A., Grädel, E.: Automatic structures. In: Proc. 15th IEEE Symp. on Logic in Computer Science, pp. 51–62. IEEE Computer Society Press (1999)

    Google Scholar 

  6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers C-35(8), 677–691 (1986)

    Google Scholar 

  7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, C.C., Keisler, H.J.: Model Theory. In: Studies in Logic and the Foundations of Mathematics, Elsevier (1990)

    Google Scholar 

  9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)

    Google Scholar 

  10. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Culik, K., Yu, S.: Undecidability of CA classification schemes. Complex Systems 2(2), 177–190 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Patterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett, Burlington (1992)

    MATH  Google Scholar 

  13. Finkel, O.: On decidability properties of one-dimensional cellular automata. Computing Research Repository, abs/0903.4615 (2009)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)

    Google Scholar 

  15. Grigorchuk, R., Šunić, Z.: Self-Similarity and Branching in Group Theory. In: Groups St. Andrews 2005. London Math. Soc. Lec. Notes, vol. 339. Cambridge University Press (2007)

    Google Scholar 

  16. Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical systems and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)

    Google Scholar 

  17. Harrington, L., Shelah, S.: The undecidability of the recursively enumerable degrees. Bull. Amer. Math. Soc. 6, 79–80 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–375 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge, UP (2000)

    Google Scholar 

  20. Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21(3), 571–586 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions. J. Autom. Lang. Comb. 8(2), 287–301 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in Computer Science (2006)

    Google Scholar 

  25. Kurka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Th. Dynamical Systems 17, 417–433 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kurka, P.: Topological and Symbolic Dynamics. Number 11 in Cours Spécialisés. Societe Mathematique de France, Paris (2003)

    Google Scholar 

  27. Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Complex Systems 4(3), 281–297 (1990)

    MathSciNet  Google Scholar 

  28. Li, W., Packard, N., Langton, C.G.: Transition phenomena in CA rule space. Physica D 45(1-3), 77–94 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lind, D.: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics and its Applications. Proc. Sympos. Appl. Math., vol. 60, pp. 61–79. AMS (2004)

    Google Scholar 

  30. Margenstern, M.: Frontier between decidability and undecidability: a survey. TCS 231, 217–251 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Meyers, R.A. (ed.): Encyclopedia of Complexity and System Science. Springer, Berlin (2009)

    Google Scholar 

  32. Neary, R., Woods, D.: On the time complexity of 2-tag systems and small universal turing machines. In: FOCS, pp. 439–448. IEEE Computer Society, Washington (2006)

    Google Scholar 

  33. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Nekrashevych, V.: Self-Similar Groups. In: Math. Surveys and Monographs, vol. 117. AMS (2005)

    Google Scholar 

  35. Perrin, D., Pin, J.-E.: Infinite Words. In: Pure and Applied Math., vol. 141, Elsevier, Amsterdam (2004)

    Google Scholar 

  36. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM Jour. Research 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  37. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  38. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. Math. 80, 300–312 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  39. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327. IEEE Computer Soc. Press, Washington (1988)

    Google Scholar 

  40. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

    Google Scholar 

  41. Soare, R.I.: Recursively Enumerable Sets and Degrees. In: Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  42. Sutner, K.: A note on Culik-Yu classes. Complex Systems 3(1), 107–115 (1989)

    MATH  MathSciNet  Google Scholar 

  43. Sutner, K.: Classifying circular cellular automata. Phys. D 45(1-3), 386–395 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5(1), 19–30 (1991)

    MATH  MathSciNet  Google Scholar 

  45. Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer Science 296, 365–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sutner, K.: Universality and cellular automata. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 50–59. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  47. Sutner, K.: Encyclopedia of Complexity and System Science, chapter Classification of Cellular Automata. In: Meyers [31] (2009)

    Google Scholar 

  48. Sutner, K.: Model checking one-dimensional cellular automata. J. Cellular Automata 4(3), 213–224 (2009)

    MATH  MathSciNet  Google Scholar 

  49. Sutner, K.: Cellular automata, decidability and phasespace. Fundamenta Informaticae 140, 1–20 (2010)

    MathSciNet  Google Scholar 

  50. Sutner, K., Lewi, K.: Iterating invertible binary transducers. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 294–306. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  51. Vorhees, B.: Computational Analysis of One-Dimensional Cellular Automata. World Scientific, Singapore (1996)

    Google Scholar 

  52. Wolfram, S.: Computation theory of cellular automata. Comm. Math. Physics 96(1), 15–57 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  53. Wolfram, S.: Twenty problems in the theory of cellular automata. Physica Scripta T9, 170–183 (1985)

    Google Scholar 

  54. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    Google Scholar 

  55. Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Sutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sutner, K. (2015). Linear Cellular Automata and Decidability. In: Adamatzky, A. (eds) Automata, Universality, Computation. Emergence, Complexity and Computation, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09039-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09039-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09038-2

  • Online ISBN: 978-3-319-09039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics