Advertisement

Linear Cellular Automata and Decidability

  • Klaus SutnerEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

We delineate the boundary between decidability and undecidability in the context of one-dimensional cellular automata. The key tool for decidability results are automata-theoretic methods, and in particular decision algorithms for automatic structures, that are inherently limited to dealing with a bounded number of steps in the evolution of a configuration. Undecidability and hardness, on the other hand, are closely related to the full orbit problem: does a given configuration appear in the orbit of another?

Keywords

Model Check Cellular Automaton Turing Machine Decision Algorithm Regular Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, London (1994)Google Scholar
  2. 2.
    Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. Journal of Computer and Systems Sciences 6, 448–464 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avigad, J., Harrison, J.: Formally verified mathematics. Comm. ACM 57(4), 66–75 (2014)CrossRefGoogle Scholar
  4. 4.
    Bartholdi, L., Silva, P.V.: Groups defined by automata. CoRR, abs/1012.1531 (2010)Google Scholar
  5. 5.
    Blumensath, A., Grädel, E.: Automatic structures. In: Proc. 15th IEEE Symp. on Logic in Computer Science, pp. 51–62. IEEE Computer Society Press (1999)Google Scholar
  6. 6.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers C-35(8), 677–691 (1986)Google Scholar
  7. 7.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chang, C.C., Keisler, H.J.: Model Theory. In: Studies in Logic and the Foundations of Mathematics, Elsevier (1990)Google Scholar
  9. 9.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)Google Scholar
  10. 10.
    Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Culik, K., Yu, S.: Undecidability of CA classification schemes. Complex Systems 2(2), 177–190 (1988)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Patterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett, Burlington (1992)zbMATHGoogle Scholar
  13. 13.
    Finkel, O.: On decidability properties of one-dimensional cellular automata. Computing Research Repository, abs/0903.4615 (2009)Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)Google Scholar
  15. 15.
    Grigorchuk, R., Šunić, Z.: Self-Similarity and Branching in Group Theory. In: Groups St. Andrews 2005. London Math. Soc. Lec. Notes, vol. 339. Cambridge University Press (2007)Google Scholar
  16. 16.
    Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical systems and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)Google Scholar
  17. 17.
    Harrington, L., Shelah, S.: The undecidability of the recursively enumerable degrees. Bull. Amer. Math. Soc. 6, 79–80 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–375 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge, UP (2000)Google Scholar
  20. 20.
    Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21(3), 571–586 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions. J. Autom. Lang. Comb. 8(2), 287–301 (2003)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in Computer Science (2006)Google Scholar
  25. 25.
    Kurka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Th. Dynamical Systems 17, 417–433 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kurka, P.: Topological and Symbolic Dynamics. Number 11 in Cours Spécialisés. Societe Mathematique de France, Paris (2003)Google Scholar
  27. 27.
    Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Complex Systems 4(3), 281–297 (1990)MathSciNetGoogle Scholar
  28. 28.
    Li, W., Packard, N., Langton, C.G.: Transition phenomena in CA rule space. Physica D 45(1-3), 77–94 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lind, D.: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics and its Applications. Proc. Sympos. Appl. Math., vol. 60, pp. 61–79. AMS (2004)Google Scholar
  30. 30.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. TCS 231, 217–251 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Meyers, R.A. (ed.): Encyclopedia of Complexity and System Science. Springer, Berlin (2009)Google Scholar
  32. 32.
    Neary, R., Woods, D.: On the time complexity of 2-tag systems and small universal turing machines. In: FOCS, pp. 439–448. IEEE Computer Society, Washington (2006)Google Scholar
  33. 33.
    Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Nekrashevych, V.: Self-Similar Groups. In: Math. Surveys and Monographs, vol. 117. AMS (2005)Google Scholar
  35. 35.
    Perrin, D., Pin, J.-E.: Infinite Words. In: Pure and Applied Math., vol. 141, Elsevier, Amsterdam (2004)Google Scholar
  36. 36.
    Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM Jour. Research 3(2), 114–125 (1959)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  38. 38.
    Sacks, G.E.: The recursively enumerable degrees are dense. Ann. Math. 80, 300–312 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327. IEEE Computer Soc. Press, Washington (1988)Google Scholar
  40. 40.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  41. 41.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. In: Perspectives in Mathematical Logic. Springer, Berlin (1987)Google Scholar
  42. 42.
    Sutner, K.: A note on Culik-Yu classes. Complex Systems 3(1), 107–115 (1989)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Sutner, K.: Classifying circular cellular automata. Phys. D 45(1-3), 386–395 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5(1), 19–30 (1991)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer Science 296, 365–375 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Sutner, K.: Universality and cellular automata. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 50–59. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  47. 47.
    Sutner, K.: Encyclopedia of Complexity and System Science, chapter Classification of Cellular Automata. In: Meyers [31] (2009)Google Scholar
  48. 48.
    Sutner, K.: Model checking one-dimensional cellular automata. J. Cellular Automata 4(3), 213–224 (2009)zbMATHMathSciNetGoogle Scholar
  49. 49.
    Sutner, K.: Cellular automata, decidability and phasespace. Fundamenta Informaticae 140, 1–20 (2010)MathSciNetGoogle Scholar
  50. 50.
    Sutner, K., Lewi, K.: Iterating invertible binary transducers. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 294–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  51. 51.
    Vorhees, B.: Computational Analysis of One-Dimensional Cellular Automata. World Scientific, Singapore (1996)Google Scholar
  52. 52.
    Wolfram, S.: Computation theory of cellular automata. Comm. Math. Physics 96(1), 15–57 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Wolfram, S.: Twenty problems in the theory of cellular automata. Physica Scripta T9, 170–183 (1985)Google Scholar
  54. 54.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)Google Scholar
  55. 55.
    Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations