The Common Structure of the Curves Having a Same Gauss Word

  • Bruno CourcelleEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)


Gauss words are finite sequences of letters associated with self-intersecting closed curves in the plane. (These curves have no “triple” self-intersection). These sequences encode the order of intersections on the curves. We characterize, up to homeomorphism, all curves having a given Gauss word. We extend this characterization to the n-tuples of closed curves having a given n-tuple of words, that we call a Gauss multiword. These words encode the self-intersections of the curves and their pairwise intersections. Our characterization uses decompositions of strongly connected graphs in 3-edge-connected components and algebraic terms formalizing these decompositions.


Directed Graph Regular Graph Atomic Decomposition Plane Embedding Biconnected Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, C.: The knot book. AMS (2004)Google Scholar
  2. 2.
    Bollobas, B.: Modern graph theory. Springer (2001)Google Scholar
  3. 3.
    Chaves, N., Weber, C.: Plombages de rubans et problème des mots de Gauss. Exp. Math. 12, 53–77 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Courcelle, B.: The monadic second-order logic of graphs XII: Planar graphs and planar maps. Theoret. Comput. Sci. 237, 1–32 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: The atomic decomposition of strongly connected graphs, Research report (June 2013),
  6. 6.
    Courcelle, B., Dussaux, V.: Map genus, forbidden maps and monadic second-order logic. The Electronic Journal of Combinatorics 9(1), 40 (2002), MathSciNetGoogle Scholar
  7. 7.
    Diestel, R.: Graph theory, 4th edn. Springer (2010),
  8. 8.
    de Fraysseix, H., Ossona de Mendez, P.: On a characterization of Gauss codes. Discrete Comput. Geom. 22, 287–295 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Galil, Z., Italiano, G.: Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Godsil, C., Royle, G.: Algebraic graph theory. Springer (2001)Google Scholar
  11. 11.
    Lins, S., Richter, B., Shank, H.: The Gauss code problem off the plane. Aequationes Mathematicae 33, 81–95 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lovasz, L., Marx, M.: A forbidden substructure characterization of Gauss codes. Bulletin of the AMS 82, 121–122 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12, 6–26 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mohar, B., Thomassen, C.: Graphs on surfaces. The Johns Hopkins University Press (2001)Google Scholar
  15. 15.
    Naor, D., Gusfield, D., Martel, C.: A fast algorithm for optimally increasing the edge connectivity. SIAM J. Comput. 26, 1139–1165 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rosenstiehl, P.: Solution algébrique du problème Gauss sur la permutation des points d’intersection d’une ou plusieurs courbes fermées du plan. C. R. Acad. Sc. Paris, Sér. A 283, 551–553 (1976)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput. Syst. 40, 125–142 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LaBRIBordeaux University and CNRSBordeauxFrance

Personalised recommendations