Skip to main content

Fuel Sampling

  • Chapter
  • First Online:
Wildland Fuel Fundamentals and Applications
  • 824 Accesses

Abstract

Fire projects quantify fuel loading using a wide diversity of methods, techniques, and protocols. This chapter presents a summary of the approaches, methods, and techniques used for the sampling of fuel loading.

Not everything that can be counted counts, and not everything that counts can be counted

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affleck DLR (2008) A line intersect distance sampling strategy for downed wood inventory. Can J For Res 38(8):2262–2273. doi:10.1139/x08-056

    Article  Google Scholar 

  • Alexander ME, Cruz MG (2014) Tables for estimating canopy fuel characteristics from stand variables in four Interior West conifer forest types. For Sci 60(4):784–794

    Google Scholar 

  • Arcos A, Alvarado E, Sandberg DV (1998) Volume estimation of large woody debris with a stereoscopic vision technique. In: Proceedings of the 13th Conference on Fire and Forest Meteorology, Lorne, Australia. International Association of Wildland Fire, pp 439–447

    Google Scholar 

  • Axelson JN, Alfaro RI, Hawkes BC (2009) Influence of fire and mountain pine beetle on the dynamics of lodgepole pine stands in British Columbia, Canada. For Ecol Manage 257(9):1874–1882. doi:http://dx.doi.org/10.1016/j.foreco.2009.01.047

    Article  Google Scholar 

  • Baker WL (2009) Fire ecology in rocky mountain landscapes. Island Press, Washington, p 182

    Google Scholar 

  • Bate LJ, Torgersen TR, Wisdom MJ, Garton EO (2004) Performance of sampling methods to estimate log characteristics for wildlife. For Ecol Manage 199:83–102

    Article  Google Scholar 

  • Bebber DP, Thomas SC (2003) Prism sweeps for coarse woody debris. Can J For Res 33:1737–1743

    Article  Google Scholar 

  • Brown JK (1970) A method for inventorying downed woody fuel. USDA Forest Service, Intermountain Research Station, General Technical Report INT-16. Ogden, UT, 16 pp

    Article  Google Scholar 

  • Brown JK (1971) A planar intersect method for sampling fuel volume and surface area. For Sci 17(1):96–102

    Google Scholar 

  • Brown JK (1974) Handbook for inventorying downed woody material. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report GTR-INT-16 Ogden, UT, USA, 34 pp

    Google Scholar 

  • Brown JK (1978) Weight and density of crowns of Rocky Mountain conifers. United States Department of Agriculture, Forest Service Intermountain Forest and Range Experiment Station, Research Paper INT-197 Ogden, UT, USA, 56 pp

    Google Scholar 

  • Brown JK (1981) Bulk densities of nonuniform surface fuels and their application to fire modeling. For Sci 27:667–683

    Article  Google Scholar 

  • Brown JK, Bevins CD (1986) Surface fuel loadings and predicted fire behavior for vegetation types in the northern Rocky Mountains. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-358 Ogden, UT, USA, 9 pp

    Google Scholar 

  • Brown JK, Oberheu RD, Johnston CM (1982) Handbook for inventoring surface fuels and biomass in the Interior West. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-129 Ogden, UT, USA, 48 pp

    Google Scholar 

  • Busing R, Rimar K, Stolte KW, Stohlgren TJ, Waddell K (2000) Forest health monitoring. Vegetation pilot field methods guide. Vegetation diversity and structure down woody debris fuel loading. USDA Forest Service, National Forest Health Monitoring Program, Washington, D.C., USA, 54 pp

    Google Scholar 

  • Catchpole WR, Wheeler CJ (1992) Estimating plant biomass: a review of techniques. Aus J Ecol 17(2):121–131. doi:10.1111/j.1442-9993.1992.tb00790.x

    Article  Google Scholar 

  • Delisle GP, Woodard PM, Titus SJ, Johnson AF (1988) Sample size and variability of fuel weight estimates in natural stands of lodgepole pine. Can J For Res 18:649–652

    Article  Google Scholar 

  • Dibble AC, Rees CA (2005) Does the lack of reference ecosystems limit our science? A case study in nonnnative invasive plants as forest fuels. J For 103(7):329–338

    Google Scholar 

  • Ducey MJ, Williams MS, Gove JH, Valentine HT (2008) Simultaneous unbiased estimates of multiple downed wood attributes in perpendicular distance sampling. Can J For Res 38(7):2044–2051. doi:10.1139/x08-019

    Article  Google Scholar 

  • Ducey MJ, Williams MS, Gove JH, Roberge S, Kenning RS (2013) Distance-limited perpendicular distance sampling for coarse woody debris: theory and field results. Forestry 86(1):119–128. doi:10.1093/forestry/cps059

    Article  Google Scholar 

  • Fahnestock GR (1971) Weight of brushy forest fire fuels from photographs. For Sci 17(1):119–124

    Google Scholar 

  • Fischer WC (1981) Photo guide for appraising downed woody fuels in Montana forests: Interior ponderosa pine, ponderosa pine-larch-Douglas-fir, larch-Douglas-fir, and Interior Douglas-fir cover types. USDA Forest Service, Intermountain Research Station, General Technical Report INT-197 Ogden, UT, USA, 133 pp

    Google Scholar 

  • Fosberg MA, Lancaster JW, Schroeder MJ (1970) Fuel moisture response-drying relationships under standard and field conditions. For Sci 16:121–128

    Google Scholar 

  • Gould JS, McCaw W, Cheney N, Ellis P, Matthews S (2008) field guide: fire in dry eucalypt forest: fuel assessment and fire behaviour prediction in dry eucalypt forest. CSIRO PUBLISHING, Canberra, ACT, Australia, 33 pp. ISBN: 0643102760

    Google Scholar 

  • Gould JS, Lachlan McCaw W, Phillip Cheney N (2011) Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For Ecol Manage 262(3):531–546. doi:http://dx.doi.org/10.1016/j.foreco.2011.04.022

    Article  Google Scholar 

  • Gove JH, Williams MS, Stahl G, Ducey MJ (2005) Critical point relascope sampling for unbiased volume estimation of downed coarse woody debris. Forestry 78(4):417–431

    Article  Google Scholar 

  • Gove JH, Ducey MJ, Valentine HT, Williams MS (2012) A distance limited method for sampling downed coarse woody debris. For Ecol Manage 282(0):53–62. doi:http://dx.doi.org/10.1016/j.foreco.2012.06.014

    Article  Google Scholar 

  • Gove JH, Ducey MJ, Valentine HT, Williams MS (2013) A comprehensive comparison of perpendicular distance sampling methods for sampling downed coarse woody debris. Forestry 86(1):129–143. doi:10.1093/forestry/cps039

    Article  Google Scholar 

  • Hansen MH (1985) Line intersect sampling of wooded strips. For Sci 31(2):282–288

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Hood S, Wu R (2006) Estimating fuel bed loadings in masticated areas. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success, Portland, Oregon, USA. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Proceedings RMRS-P-41, pp 333–345

    Google Scholar 

  • Jin S (2004) Computer classification of four major components of surface fuel in Northeast China by image: the first step towards describing spatial heterogeneity of surface fuels by images. For Ecol Manage 203:395–406

    Article  Google Scholar 

  • Jordan GJ, Ducey MJ, Gove JH (2004) Comparing line-intersect, fixed-area, and point relascope sampling for dead and downed coarse woody material in a managed northern hardwood forest. Can J For Res 34:1766–1775

    Article  Google Scholar 

  • Keane RE, Reinhardt ED, Scott J, Gray K, Reardon J (2005) Estimating forest canopy bulk density using six indirect methods. Can J For Res 35:724–739

    Article  Google Scholar 

  • Keane RE, Frescino TL, Reeves MC, Long J (2006) Mapping wildland fuels across large regions for the LANDFIRE prototype project. In: Rollins MG, Frame C (eds) The LANDFIRE prototype project: nationally consistent and locally relevant geospatial data for wildland fire management, 2006. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-175 Fort Collins, CO, USA, pp 367–396

    Google Scholar 

  • Keane RE, Dickinson LJ (2007a) Development and evaluation of the photoload sampling technique. USDA Forest Service Rocky Mountain Research Station, Research Paper RMRS-RP-61CD Fort Collins, CO USA, 44 pp

    Google Scholar 

  • Keane RE, Dickinson LJ (2007b) The photoload sampling technique: estimating surface fuel loadings using downward looking photographs. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-190 Fort Collins, CO, USA. 44 pp

    Google Scholar 

  • Keane RE, Gray K, Bacciu V, Leirfallom S (2012a) Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA. Landsc Ecol 27(8):1213–1234. doi:10.1007/s10980-012-9773-9

    Google Scholar 

  • Keane RE, Gray K, Bacciu V (2012b) Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems. USDA Forest Service Rocky Mountain Research Station, Research Paper RMRS-RP-98 Fort Collins, Colorado, USA, 58 pp

    Google Scholar 

  • Keane RE, Gray K (2013) Comparing three sampling techniques for estimating fine woody down dead biomass. Intl J Wildland Fire 22(8):1093–1107. doi:http://dx.doi.org/10.1071/WF13038

    Article  Google Scholar 

  • Keane RE, Herynk JM, Toney C, Urbanski SP, Lutes DC, Ottmar RD (2013) Evaluating the performance and mapping of three fuel classification systems using forest inventory and analysis surface fuel measurements. For Ecol Manage 305:248–263. doi:http://dx.doi.org/10.1016/j.foreco.2013.06.001

    Article  Google Scholar 

  • Koski WH, Fischer WC (1979) Photo series for appraising thinning slash in north Idaho. USDA Forest Service Intermountain Forest and Range Experiment Station, General Technical Report INT-46 Ogden, UT, USA, 22 pp

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin Cummings, New York

    Google Scholar 

  • Loudermilk EL, Hiers JK, O’Brien JJ, Mitchell RJ, Singhania A, Fernandez JC, Cropper WP, Slatton KC (2009) Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. Int J Wildland Fire 18(6):676–685. doi:http://dx.doi.org/10.1071/WF07138

    Article  Google Scholar 

  • Lutes DC (1999) A comparison of methods for the quantification of coarse woody debris and identification of its spatial scale: a study from the Tenderfoot Experimental Forest, Montana. Master of Science Thesis, The University of Montana, Missoula, MT, USA, 55 pp

    Google Scholar 

  • Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi LJ (2006) FIREMON: fire effects monitoring and inventory system. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-164-CD Fort Collins 222 pp

    Google Scholar 

  • Lutes DC, Benson NC, Keifer M, Caratti JF, Streetman SA (2009a) FFI: a software tool for ecological monitoring*. Int J Wildland Fire 18(3):310–314. doi:http://dx.doi.org/10.1071/WF08083

  • Lutes DC, Keane RE, Caratti JF (2009b) A surface fuels classification for estimating fire effects. Int J Wildland Fire 18:802–814

    Google Scholar 

  • Maser C, Anderson RG, Cromack K, Williams JT, Martin RE (1979) Dead and down woody material. In: Wildlife habitats in managed forests: the Blue Mountains of Oregon and Washington. Agric Handb 553. US Department of Agriculture, Washington, DC, USA, pp 78–95

    Google Scholar 

  • Maxwell WG (1976) Photo series for quantifying forest residues in the coastal Douglas-fir–hemlock type, coastal Douglas-fir–hardwood type. US Forest Service Pacific Northwest Forest and Range Experiment Station, General Technical Report PNW-51 Portland, OR, USA, 55 pp

    Google Scholar 

  • McKenzie D, Raymond CL, Kellogg L-KB, Norheim RA, Andreu A, Bayard AC, Kopper KE, Elman E (2007) Mapping fuels at multiple scales: landscape application of the fuel characteristic classification system. Can J For Res 37:2421–2437

    Article  Google Scholar 

  • Morfin-Ríos JE, Alvarado-Deliestino E, Jardel-Peláez EJ, Vihnanek RE, Wright DK, Michel-Fuentes JM, Wright CS, Ottmar RD, Sandberg DV, Nájera-Díaz A (2007) Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur; and temperate forests and montane shrubland of the northern Sierra Madre Oriental

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York, 234 pp

    Google Scholar 

  • Nalder IA, Wein RW, Alexander ME, de Groot WJ (1999) Physical properties of dead and downed round-wood fuels in the boreal forests of western and northern Canada. Int J Wildland Fire 9(2):85–99

    Article  Google Scholar 

  • Nemec-Linnell AF, Davis G (2002) Efficiency of six line intersect sampling designs for estimating volume and density of coarse woody debris. BCMOF Vancouver Forest Region, Research Section, Technical Report No. 15 Nanaimo, BC, Canada 12 pp

    Google Scholar 

  • Ottmar RD, Vihnanek RE (2000) Stereo photo series for quantifying natural fuels. Longleaf pine, pocosin, and marshgrass types in the southeast United States, vol VI, National Wildfire Coordinating Group National Interagency Fire Center, Boise

    Google Scholar 

  • Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007) An overview of the fuel characteristic classification system – quantifying, classifying, and creating fuelbeds for resource planning. Can J For Res 37:2383–2393

    Article  Google Scholar 

  • Poulos HM, Camp AE, Gatewood RG, Loomis L (2007) A hierarchical approach for scaling forest inventory and fuels data from local to landscape scales in the Davis Mountains, Texas, USA. For Ecol Manage 244(1–3):1–15

    Article  Google Scholar 

  • Reeves MC, Kost JR, Ryan KC (2006) Fuels products of the LANDFIRE project. In: Andrews PL, Butler BW (eds) Fuels management – how to measure success, Portland OR, 2006. USDA Forest Service Rocky Mountain Research Station, Proceedings RMRS-P-41 Fort Collins, CO USA pp 239–249

    Google Scholar 

  • Reeves MC, Ryan KC, Rollins MC, Thompson TG (2009) Spatial fuel data products of the LANDFIRE project. Int J Wildland Fire 18:250–267

    Article  Google Scholar 

  • Reinhardt E, Keane RE, Brown JK (1997) First order fire effects model: FOFEM 4.0 User’s Guide. USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-344. 65 pp

    Google Scholar 

  • Reinhardt E, Lutes D, Scott J (2006a) FuelCalc: a method for estimating fuel characteristics. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success, Portland, OR, pp 273–287. I U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Proceedings RMRS-P-41 Fort Collins, CO

    Google Scholar 

  • Reinhardt E, Scott J, Gray K, Keane R (2006b) Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Can J For Res-Revue Canadienne De Recherche Forestiere 36(11):2803–2814. doi:Doi 10.1139/X06–157

    Google Scholar 

  • Riccardi CL, Ottmar RD, Sandberg DV, Andreu A, Elman E, Kopper K, Long J (2007) The fuelbed: a key element of the Fuel Characteristic Classification System. Can J For Res 37:2394–2412

    Article  Google Scholar 

  • Sampson RN, Sampson RW (2005) Application of hazard and risk analysis at the project level to assess ecologic impact. For Ecol Manage 211:109–116

    Article  Google Scholar 

  • Sandberg DV, Ottmar RD, Cushon GH (2001) Characterizing fuels in the 21st century. Int J Wildland Fire 10:381–387

    Article  Google Scholar 

  • Scott JH, Reinhardt ED (2005) Stereo photo guide for estimating canopy fuel characteristics in conifer stands. USDA Forest Service Rocky Mountain Research Station, General Technical Report RMRS-GTR-145 Fort Collins, CO, USA, 47 pp

    Google Scholar 

  • Sikkink PG, Keane RE (2008) A comparison of five sampling techniques to estimate surface fuel loading in montane forests. Int J Wildland Fire 17(3):363–379. doi:10.1071/Wf07003

    Article  Google Scholar 

  • Sneeuwjagt RJ (1973) Measuring forest fuels. Forests Department of Western Australia, Research Paper Number 9, Perth, Australia, 6 pp

    Google Scholar 

  • Stahl G (1998) Transect relascope sampling – a method for the quantification of coarse woody debris. For Sci 44:58–63

    Google Scholar 

  • StÃ¥hl G, Gove J, Williams M, Ducey M (2010) Critical length sampling: a method to estimate the volume of downed coarse woody debris. Eur J For Res 129(6):993–1000. doi:10.1007/s10342-010-0382-3

    Google Scholar 

  • Van Wagner CE (1968) The line intersect method in forest fuel sampling. For Sci 14(1):20–26

    Google Scholar 

  • Vihnanek RE, Balog CS, Wright CS, Ottmar RD, Kelly JW (2009) Stereo photo series for quantifying natural fuels. Post-hurricane fuels in forests of the Southeast United States, vol XII, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Gen. Tech. Rep. PNW-GTR-803. Portland, OR, USA, 53 pp

    Google Scholar 

  • Vries PGD (1974) Multi-stage line intersect sampling. For Sci 20(2):129–134

    Google Scholar 

  • Waddell KL (2001) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1:139–153

    Article  Google Scholar 

  • Warren WG, Olsen PF (1964) A line intersect technique for assessing logging waste. For Sci 10(3):267–276

    Google Scholar 

  • Williams MS, Gove JH (2003) Perpendicular distance sampling: an alternative method for sampling downed coarse woody debris. Can J For Res 33:1564–1579

    Article  Google Scholar 

  • Woldendorp G, Keenan RJ, Barry S, Spencer DR (2004) Analysis of sampling methods for coarse woody debris. For Ecol Manage 198:133–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Keane .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keane, R. (2015). Fuel Sampling. In: Wildland Fuel Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09015-3_8

Download citation

Publish with us

Policies and ethics