Skip to main content

A Mathematical Model for the Blood Plasma Flow Around Two Aggregated Low-Density Lipoproteins

  • Conference paper
  • First Online:
GeNeDis 2014

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 820))

Abstract

The rheological behaviour of low-density lipoprotein (LDL) particles within the blood plasma and their role in atherogenesis, as well as their ability to aggregate under certain circumstances, is the subject of many clinical tests and theoretical studies aiming at the prevention of atherosclerosis. In the present study we develop a mathematical model that describes the flow of the blood plasma around two aggregated LDLs. We consider the flow as a creeping steady incompressible axisymmetric one, while the two aggregated LDLs are described by an inverted oblate spheroid. The mathematical methods of Kelvin inversion and the semi-separation of variables are employed and analytical expressions for the stream function are derived. These expressions are expected to be useful for further model developing and screening as well as the theoretical justification and validation of laboratory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu S, Lin B (2001) The mechanism of oxidation-induced low-density lipoprotein aggregation: an analogy to colloidal aggregation and beyond? Phys J 81(4):2403–2413

    CAS  Google Scholar 

  2. http://en.wikipedia.org/wiki/Low-density_lipoprotein

  3. Cromwell WC, Otvos JD (2004) Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep 6(5):381–387. doi:10.1007/s11883-004-0050-5, PMID: 15296705

    Article  PubMed  Google Scholar 

  4. O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R (2004) Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll Cardiol 43(11):2142–2146

    Article  PubMed  Google Scholar 

  5. Pentikäinen MO, Lehtonen EM, Kovanen PT (1996) Aggregation and fusion of modified low density lipoprotein. J Lipid Res 37(12):2638–2649

    PubMed  Google Scholar 

  6. Xu S (1998) Apolipoprotein(a) binds to low-density lipoprotein at two distant sites in lipoprotein(a). Biochemistry 37(26):9284–9294

    Article  CAS  PubMed  Google Scholar 

  7. Lu M, Gursky O (2013) Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol Concepts 4(5):501–518

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hadjinicolaou M (2000) Non-destructive identification of spherical inclusions. Adv Compos Lett 9(1):25–33

    Google Scholar 

  9. Ursini F, Davies KJ, Maiorino M, Parasassi T, Sevanian A (2002) Atherosclerosis: another protein misfolding disease? Trends Mol Med 8(8):370–374

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez-Quesada JL, Villegas S, Ordóñez-Llanos J (2012) Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol 23(5):479–486

    Article  PubMed  Google Scholar 

  11. Dassios G, Hadjinicolaou M, Protopapas E (2012) Blood plasma flow past a red blood cell: mathematical modeling and analytical treatment. Math Methods Appl Sci 35(13):1489–1612

    Article  Google Scholar 

  12. Hadjinicolaou M, Kamvyssas G, Protopapas E (2014) Stokes flow applied to the sedimentation of a red blood cell. Q Appl Math. Online ISSN 1552-4485

    Google Scholar 

  13. Dassios G (2009) The Kelvin transformation in potential theory and Stokes flow. IMA J Appl Math 74:427–438

    Article  Google Scholar 

  14. Baganis G, Hadjinicolaou M (2009) Analytic solution of an exterior Dirichlet problem in a non-convex domain. IMA J Appl Math 74(5):668–684

    Article  Google Scholar 

  15. Baganis G, Hadjinicolaou M (2010) Analytic solution of an exterior Neumann problem in a non-convex domain. Math Methods Appl Sci 33(17):2067–2075

    Article  Google Scholar 

  16. Baganis G, Dassios G, Hadjinicolaou M, Protopapas E (2013) The Kelvin transformation as a tool for analyzing problems in medicine and technology. Math Methods Appl Sci. doi:10.1002/mma.2903

    Google Scholar 

  17. Dassios G, Hadjinicolaou M, Payatakes AC (1994) Generalized eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates. Q Appl Math LII(I):157–191

    Google Scholar 

  18. Hadjinicolaou M, Protopapas E (2013) On the R-semiseparation of the Stokes bi-stream operator in the inverted prolate spheroidal coordinates. Math Methods Appl Sci. doi:10.1002/mma.2841

    Google Scholar 

  19. Happel J, Brenner H (1991) Low Reynolds number hydrodynamics. Kluwer Academic Publishers, London

    Google Scholar 

  20. Hadjinicolaou M, Protopapas E (2014) Translation of two aggregated low density lipoproteins. A mathematical model, Advances in Experimental Medicine and Biology_820, DOI 10.1007/978-3-319-09012-2-12

    Google Scholar 

  21. Dassios G, Kleinman R (1989) On the capacity and Rayleigh scattering for a class of non-convex bodies. Q J Mech Appl Math 42(3):467–475

    Article  Google Scholar 

  22. Lebedev NN (1972) Special functions and their applications. Dover Publications, New York

    Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hadjinicolaou .

Editor information

Editors and Affiliations

Appendix

Appendix

From [21] we have that

$$ \frac{1}{r}=\frac{1}{\overline{c}}{\displaystyle \sum_{n=0}^{\infty}\frac{{\left(-1\right)}^n\left(4n+1\right)(2n)!}{2^{2n}{\left(n!\right)}^2}\;i}\;{Q}_{2n}\left(i\lambda \right){P}_{2n}\left(\zeta \right). $$
(11.25)

Employing the relations connecting the Legendre functions with the Gegenbauer functions [22], using recurrence relations and after performing calculations, we arrive at

$$ \frac{\left(1-{\zeta}^2\right)\left({\lambda}^2+1\right)}{\sqrt{\lambda^2-{\zeta}^2+1}}=\left[-2{G}_1\left(i\lambda \right)-\frac{18}{5}{H}_2\left(i\lambda \right)-\frac{12}{5}{H}_4\left(i\lambda \right)\right]\kern0.24em i{G}_2\left(\zeta \right)+{\displaystyle \sum_{n=2}^{\infty }{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}\left(i\lambda \right)\;i\;{G}_{2n}\left(\zeta \right)}+{\displaystyle \sum_{n=2}^{\infty}\left(-{w}_{n-1}{e}_{n-1}^2-{w}_n{d}_n^2\right){H}_{2n}\left(i\lambda \right)\;i\;{G}_{2n}\left(\zeta \right)}+{\displaystyle \sum_{n=2}^{\infty }{w}_n{d}_n{e}_n{H}_{2n+2}\left(i\lambda \right)\;i\;{G}_{2n}\left(\zeta \right)}, $$
(11.26)

where

$$ {d}_n=\frac{2n\left(2n-1\right)}{4n+1},\kern1em {e}_n=\frac{2\left(2n+1\right)\left(n+1\right)}{4n+1},\kern1em {w}_n=\frac{{\left(-1\right)}^n\left(4n+1\right)(2n)!}{2^{2n}{\left(n!\right)}^2}. $$
(11.27)

We know from [17] that the solution of (11.18) is

$$ \psi \left(\tau, \zeta \right)={g}_0\left( i\lambda \right){G}_0\left(\zeta \right)+{g}_1\left( i\lambda \right){G}_1\left(\zeta \right)+{\displaystyle \sum_{n=2}^{\infty}\left[{g}_n\left( i\lambda \right){G}_n\left(\zeta \right)+{h}_n\left( i\lambda \right){H}_n\left(\zeta \right)\right]}, $$
(11.28)

with

$$ {g}_2\left(\tau \right)={A}_2{G}_2\left(\tau \right)+{B}_2{H}_2\left(\tau \right)+{C}_2{G}_0\left(\tau \right)+{D}_2{G}_1\left(\tau \right)+{E}_2{G}_4\left(\tau \right)+{F}_2{H}_4\left(\tau \right), $$
(11.29)

and

$$ {g}_{2n}\left(\tau \right)={A}_{2n}{G}_{2n}\left(\tau \right)+{B}_{2n}{H}_{2n}\left(\tau \right)+{C}_{2n}{G}_{2n-2}\left(\tau \right)+{D}_{2n}{H}_{2n-2}\left(\tau \right)+{E}_{2n}{G}_{2n+2}\left(\tau \right)+{F}_{2n}{H}_{2n+2}\left(\tau \right),\kern1em n\ge 2. $$
(11.30)

Using orthogonality arguments in (11.28) from (11.26) we can calculate coefficients B 2n , D 2n , F 2n , while we have to calculate A 2n , C 2n , E 2n and we have only two equations to apply. Therefore we need one more condition. We use the fact that the oblate spheroid becomes a sphere when the semifocal distance tends to zero, so the solution in the oblate coordinates becomes the solution in the spherical coordinates. This allows us to find the solution of which is given in (11.24) with

$$ {g}_2\left( i\lambda \right)={A}_2{G}_2\left( i\lambda \right)+i\frac{9b\;\overline{c}\;U}{5}{H}_2\left( i\lambda \right)+ ib\;\overline{c}\;U{G}_1\left( i\lambda \right)+{E}_2{G}_4\left( i\lambda \right)+i\frac{6b\;\overline{c}\;U}{5}{H}_4\left( i\lambda \right), $$
(11.31)
$$ {g}_{2n}\left(i\lambda \right)={A}_{2n}{G}_{2n}\left(i\lambda \right)+i\frac{b\;\overline{c}\;U}{2}\left({w}_{n-1}{e}_{n-1}^2+{w}_n{d}_n^2\right){H}_{2n}\left(i\lambda \right)-i\frac{b\;\overline{c}\;U}{2}{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}\left(i\lambda \right)+{E}_{2n}{G}_{2n+2}\left(i\lambda \right)-i\frac{b\;\overline{c}\;U}{2}{w}_n{d}_n{e}_n{H}_{2n+2}\left(i\lambda \right), $$
(11.32)
$$ {A}_2=-i\;b\;\overline{c}\;U\frac{\left|\begin{array}{cc}\hfill \frac{9}{5}{H}_2\left(i{\lambda}_0\right)+{G}_1\left(i{\lambda}_0\right)+\frac{6}{5}{H}_4\left(i{\lambda}_0\right)\hfill & \hfill {G}_4\left(i{\lambda}_0\right)\hfill \\ {}\hfill \frac{9}{5}{H}_2^{\prime}\left(i{\lambda}_0\right)+{G}_1^{\prime}\left(i{\lambda}_0\right)+\frac{6}{5}{H}_4^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill {G}_4^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}{\left|\begin{array}{cc}\hfill {G}_2\left(i{\lambda}_0\right)\hfill & \hfill {G}_4\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_2^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill {G}_4^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}, $$
(11.33)
$$ {E}_2=-i\;b\;\overline{c}\;U\frac{\left|\begin{array}{cc}\hfill {G}_2\left(i{\lambda}_0\right)\hfill & \hfill \frac{9}{5}{H}_2\left(i{\lambda}_0\right)+{G}_1\left(i{\lambda}_0\right)+\frac{6}{5}{H}_4\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_2^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill \frac{9}{5}{H}_2^{\prime}\left(i{\lambda}_0\right)+{G}_1^{\prime}\left(i{\lambda}_0\right)+\frac{6}{5}{H}_4^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}{\left|\begin{array}{cc}\hfill {G}_2\left(i{\lambda}_0\right)\hfill & \hfill {G}_4\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_2^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill {G}_4^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}, $$
(11.34)
$$ {A}_{2n}=-i\frac{b\;\overline{c}\;U}{2}\frac{\left|\begin{array}{c}\hfill \left({w}_{n-1}{e}_{n-1}^2+{w}_n{d}_n^2\right){H}_{2n}\left(i{\lambda}_0\right)-{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}\left(i{\lambda}_0\right)-{w}_n{d}_n{e}_n{H}_{2n+2}\left(i{\lambda}_0\right)\kern1em {G}_{2n+2}\left(i{\lambda}_0\right)\hfill \\ {}\hfill \left({w}_{n-1}{e}_{n-1}^2+{w}_n{d}_n^2\right){H}_{2n}^{\prime}\left(i{\lambda}_0\right)-{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}^{\prime}\left(i{\lambda}_0\right)-{w}_n{d}_n{e}_n{H}_{2n+2}^{\prime}\left(i{\lambda}_0\right)\kern1em {G}_{2n+2}^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}{\left|\begin{array}{cc}\hfill {G}_{2n}\left(i{\lambda}_0\right)\hfill & \hfill {G}_{2n+2}\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_{2n}^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill {G}_{2n+2}^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}, $$
(11.35)

and

$$ {E}_{2n}=-i\frac{b\;\overline{c}\;U}{2}\frac{\left|\begin{array}{c}\hfill {G}_{2n}\left(i{\lambda}_0\right)\kern1em \left({w}_{n-1}{e}_{n-1}^2+{w}_n{d}_n^2\right){H}_{2n}\left(i{\lambda}_0\right)-{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}\left(i{\lambda}_0\right)-{w}_n{d}_n{e}_n{H}_{2n+2}\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_{2n}^{\prime}\left(i{\lambda}_0\right)\kern1em \left({w}_{n-1}{e}_{n-1}^2+{w}_n{d}_n^2\right){H}_{2n}^{\prime}\left(i{\lambda}_0\right)-{w}_{n-1}{e}_{n-1}{d}_{n-1}{H}_{2n-2}^{\prime}\left(i{\lambda}_0\right)-{w}_n{d}_n{e}_n{H}_{2n+2}^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}{\left|\begin{array}{cc}\hfill {G}_{2n}\left(i{\lambda}_0\right)\hfill & \hfill {G}_{2n+2}\left(i{\lambda}_0\right)\hfill \\ {}\hfill {G}_{2n}^{\prime}\left(i{\lambda}_0\right)\hfill & \hfill {G}_{2n+2}^{\prime}\left(i{\lambda}_0\right)\hfill \end{array}\right|}. $$
(11.36)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hadjinicolaou, M. (2015). A Mathematical Model for the Blood Plasma Flow Around Two Aggregated Low-Density Lipoproteins. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 820. Springer, Cham. https://doi.org/10.1007/978-3-319-09012-2_11

Download citation

Publish with us

Policies and ethics