Skip to main content

Abstract

In this chapter, through exploiting recent advances in the integration of sensing system in a digital microfluidics biochip, we present a “physical-aware” system reconfiguration technique that uses sensor data at intermediate checkpoints to reconfigure the biochip dynamically. A cyberphysical re-synthesis technique is used to recompute electrode-actuation sequences, thereby deriving new results for module placement, droplet routing pathways, and operation schedules, with minimum impact on the time-to-response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques, Boca Raton, FL: CRC Press, 2006.

    Book  Google Scholar 

  2. T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet routing algorithm for the synthesis of digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1682–1695, 2010.

    Article  Google Scholar 

  3. E. Maftei, P. Pop, and J. Madsen, “Routing-based synthesis of digital microfluidic biochips”, Proceedings of the 2010 International conference on Compilers, Architectures and Synthesis for Embedded Systems, pp. 41–50, 2010.

    Google Scholar 

  4. T.-W. Huang and T.-Y. Ho, “A two-stage ILP-based droplet routing algorithm for pin-constrained digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol 30, no. 2, pp. 215–228, 2011.

    Article  Google Scholar 

  5. M. Iyengar and M. McGuire, “Imprecise and qualitative probability in systems biology”, International Conference on Systems Biology, 2007.

    Google Scholar 

  6. O. Levenspiel, Chemical Reaction Engineering, New York: Wiley, 1999.

    Google Scholar 

  7. J. Verheijen and M. Prins, “Reversible electrowetting and trapping of charge: model and experiments”, ACS J. Langmuir, No. 15, pp. 6616–620, 1999.

    Google Scholar 

  8. J. Park, S. Lee, and L. Kanga, “Fast and reliable droplet transport on single-plate electrowetting on dielectrics using nonfloating switching method”, Biomicrofluidics, vol. 4, Issue. 2, pp. 1–8, 2010.

    Article  Google Scholar 

  9. E. Welch, Y.-Y. Lin, A. Madison, and R. Fair, “Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform”, Biotech. J., vol. 6, pp. 165–176, 2011.

    Article  Google Scholar 

  10. S. Kotchoni, E. Gachomo, E. Betiku, and O. Shonukan, “A home made kit for plasmid DNA mini-preparation”, African J. Biotech., vol. 2, pp. 88–90, 2003.

    Google Scholar 

  11. Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and error recovery in digital microfluidic lab-on-chip”, ACM JETC, vol. 3, no. 11, 2010.

    Google Scholar 

  12. C. Mein, B. Barratt, M. Dunn, T. Siegmund, A. Smith, L. Esposito, S. Nutland, H. Stevens, A. Wilson, M. Phillips, N. Jarvis, S. Law, M. Arruda, and J. Todd, “Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation”, Genome Res., vol. 10, pp. 330–343, 2000.

    Article  Google Scholar 

  13. R. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?”, Microfluidics and Nanofluidics, vol. 3, pp. 245–281, 2007.

    Article  Google Scholar 

  14. W. Bialek and J. Onuchic, “Protein dynamics and reaction rates: mode-specific chemistry in large molecules?”, Proceedings of the National Academy of Sciences of the United States of America, vol. 85, pp. 5908–5912, 1988.

    MathSciNet  Google Scholar 

  15. N. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler II, “Progress in chip-scale photonic sensing”, IEEE Trans. Biomedical Circuits and Sys., vol. 3, pp. 202–211, 2009.

    Article  Google Scholar 

  16. R. Evans et. al., “Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors Conf., pp. 423–426, Oct. 2007.

    Google Scholar 

  17. Y. Luo, K. Chakrabarty, and T.-Y. Ho, “A cyberphysical synthesis approach for error recovery in digital microfluidic biochips”, Proc. DATE, pp. 1239–1244, 2012.

    Google Scholar 

  18. Y. Zhao and K. Chakrabarty, “Digital microfluidic logic gates and their application to built-in self-test of lab-on-chip”, IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 250–262, 2010.

    Article  Google Scholar 

  19. B. Hadwen, G. Broder, D. Morganti, A. Jacobs, C. Brown, J. Hector, Y. Kubota, and H. Morgan, “Programmable large area digital microfluidic array with integrated droplet sensing for bioassays”, Lab on a Chip, pp. 3305–3313, 2012.

    Google Scholar 

  20. M. Jebrail and A. Wheeler, “Let’s get digital: digitizing chemical biology with microfluidics”, Current Opinion in Chemical Biology, vol. 14, pp. 574–581, 2010.

    Article  Google Scholar 

  21. U. Resch-Genger et. al., “Quantum dots versus organic dyes as fluorescent labels”, Nature Methods, pp. 763–775, 2008

    Google Scholar 

  22. R. Sedgewick, Algorithms in C: Graph Algorithms, Boston, MA: Addison-Wesley, Chapter 23, 2001.

    Google Scholar 

  23. S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by simulated annealing”, Science, vol. 220 (4598), pp. 671–680, May 1983.

    Google Scholar 

  24. Y.-L. Hsieh, T.-Y. Ho and K. Chakrabarty, “A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, pp. 1656–1669, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luo, Y., Chakrabarty, K., Ho, TY. (2015). Error-Recovery in Cyberphysical Biochips. In: Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-09006-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09006-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09005-4

  • Online ISBN: 978-3-319-09006-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics