Skip to main content

Recovery from Hot Carrier Induced Degradation Through Temperature Treatment

  • Chapter
  • First Online:
Book cover Hot Carrier Degradation in Semiconductor Devices

Abstract

We investigate the temperature accelerated recovery from hot carrier (HC) damage in nMOSFETs designed for power applications. These devices have a rather thick gate oxide and long channel which assures that mainly interface traps are created through the HC stress. We analyze the time and temperature dependence of the recovery of interface traps after HC stress using models from literature. The data is fairly consistent with the assumption of interfacial silicon dangling bonds which become passivated by molecular hydrogen. The passivation energy is found to be normally distributed due to the distribution of atomic defect configurations. The distribution parameters are independent of the overall degradation level which indicates that the passivation process is limited by the bond association kinetics rather than hydrogen supply. By comparing the recovery of HC degradation and bias temperature instability (BTI) we find that the quasi-permanent component of BTI is not the same as the one built up during HC stress and may possibly contain two types of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.S. Doyle, M. Bourcerie, J.C. Marchetaux, A. Boudou, IEEE Electron Device Lett. 8, 234 (1987)

    Article  Google Scholar 

  2. P. Cuevas, IEEE Electron Device Lett. 9, 627 (1988)

    Article  Google Scholar 

  3. N. Hwang, B.S.S. Or, L. Forbes, IEEE Trans. Electron Devices 40, 1100 (1993)

    Article  Google Scholar 

  4. S. Mahapatra, D. Saha, D. Varghese, P.B. Kumar, IEEE Trans. Electron Devices 53, 1583 (2006)

    Article  Google Scholar 

  5. A. Stesmans, Appl. Phys. Lett. 68, 2076 (1996)

    Article  Google Scholar 

  6. G. Pobegen, S. Tyaginov, M. Nelhiebel, T. Grasser, IEEE Electron Device Lett. 34, 939 (2013)

    Article  Google Scholar 

  7. T. Aichinger, M. Nelhiebel, S. Einspieler, T. Grasser, IEEE Trans. Device Mat. Rel. 10, 3 (2010)

    Article  Google Scholar 

  8. G. Pobegen, M. Nelhiebel, S. de Filippis, T. Grasser, IEEE Trans. Device Mat. Rel. 14, 169 (2014)

    Article  Google Scholar 

  9. L.A. Ragnarsson, P. Lundgren, J. Appl. Phys. 88, 938 (2000)

    Article  Google Scholar 

  10. G. Pobegen, T. Aichinger, T. Grasser, M. Nelhiebel, Microelec. Rel. 51, 1530 (2011)

    Article  Google Scholar 

  11. S. Rauch, G.L. Rosa, in IEEE International Reliability Physics Symposium (2010), tutorial

    Google Scholar 

  12. A. Bravaix, V. Huard, in European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (2010), tutorial

    Google Scholar 

  13. S.E. Tyaginov, I. Starkov, H. Enichlmair, J.M. Park, C. Jungemann, T. Grasser, Electrochem. Soc. Trans. 35, 321 (2011)

    Google Scholar 

  14. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  15. T. Aichinger, M. Nelhiebel, IEEE Trans. Device Mat. Rel. 8, 509 (2008)

    Article  Google Scholar 

  16. G. Groeseneken, H.E. Maes, N. Beltran, R.F. De Keersmaecker, IEEE Trans. Electron Devices 31, 42 (1984)

    Article  Google Scholar 

  17. T. Grasser, Microelec. Rel. 52, 39 (2012)

    Article  Google Scholar 

  18. T. Aichinger, M. Nelhiebel, Characterization of MOSFET Interface States Using the Charge Pumping Technique, Chap. 3 (Springer, New York, 2014)

    Google Scholar 

  19. T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.J. Wagner, J. Franco, M. Nelhiebel, C. Ortolland, B. Kaczer, in IEEE International Reliability Physics Symposium, 2011, pp. 605–613

    Google Scholar 

  20. J.E. Shelby, J. Appl. Phys. 48, 3387 (1977)

    Article  Google Scholar 

  21. K.L. Brower, Phys. Rev. B 38, 9657 (1988)

    Article  Google Scholar 

  22. T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, H. Hutter, in IEEE International Reliability Physics Symposium, 2010, p. 1063

    Google Scholar 

  23. G. Pobegen, M. Nelhiebel, T. Grasser, in IEEE International Reliability Physics Symposium, 2013, pp. XT.10.1–XT.10.6

    Google Scholar 

  24. M.L. Reed, Semicond. Sci. Technol. 4, 980 (1989)

    Article  Google Scholar 

  25. D. Varghese, P. Moens, M.A. Alam, IEEE Trans. Electron Devices 57, 2704 (2010)

    Article  Google Scholar 

  26. Y. Nissan-Cohen, Appl. Surf. Sci. 39, 511 (1989)

    Article  Google Scholar 

  27. T. Aichinger, M. Nelhiebel, T. Grasser, in IEEE International Reliability Physics Symposium, 2009, pp. 2–7

    Google Scholar 

  28. T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, M. Nelhiebel, Microelectron. Eng. 86, 1876 (2009)

    Article  Google Scholar 

  29. T. Grasser, K. Rott, H. Reisinger, P. Wagner, W. Gös, F. Schanovsky, M. Waltl, M. Toledano-Luque, B. Kaczer, in IEEE International Reliability Physics Symposium, 2013, pp. 2D.2.1–2D.2.7

    Google Scholar 

  30. G. Pobegen, Degradation of electrical parameters of power semiconductor devices – process influences and modeling. Ph.D. thesis, 2013

    Google Scholar 

  31. A.A. Katsetos, Microelec. Rel. 48, 1655 (2008)

    Article  Google Scholar 

  32. C. Benard, J.L. Ogier, D. Goguenheim, in IEEE International Integrated Reliability Workshop, 2008, pp. 7–11

    Google Scholar 

  33. J.P. Campbell, P.M. Lenahan, C.J. Cochrane, A.T. Krishnan, S. Krishnan, IEEE Trans. Device Mat. Rel. 7, 540 (2007)

    Article  Google Scholar 

  34. T. Aichinger, M. Nelhiebel, T. Grasser, Microelec. Rel. 53, 937 (2013)

    Article  Google Scholar 

  35. H.T. Lue, P.Y. Du, C.P. Chen, W.C. Chen, C.C. Hsieh, Y.H. Hsiao, Y.H. Shih, C.Y. Lu, in IEEE International Electron Devices Meeting, 2012, pp. 9.1.1–9.1.4

    Google Scholar 

Download references

Acknowledgements

This chapter is mainly based on the references [6, 23, 30]. Stimulating discussions with Stanislav Tyaginov, Tibor Grasser (both TU Vienna), Michael Nelhiebel (KAI GmbH) and Thomas Aichinger (Infineon Technologies AG) are acknowledged. This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 831163) and the Carinthian Economic Promotion Fund (KWF, contract KWF-1521 | 22741 | 34186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Pobegen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pobegen, G. (2015). Recovery from Hot Carrier Induced Degradation Through Temperature Treatment. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics