Skip to main content

From Atoms to Circuits: Theoretical and Empirical Modeling of Hot Carrier Degradation

  • Chapter
  • First Online:

Abstract

The increase in CMOS hot carrier lifetime due to Deuterium anneals motivates a straightforward physical picture for hot carrier degradation. The various possible isotope effects provide context for a discussion of some qualitative aspects of the physics. Typical industry DC hot carrier stress models and their application to AC circuit models are described and motivated in that context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, K.W. Terrill, Hot-electron-induced MOSFET degradation-model, monitor, and improvement. IEEE Trans. Electron Device 32, 375 (1985)

    Article  Google Scholar 

  2. E. Takeda, N. Suzuki, T. Hagiwara, Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFET’S. IEEE Electron Device Lett. 4, 329 (1983)

    Article  Google Scholar 

  3. H. Ueba, T. Mii, N. Lorente, B.N.J. Persson, Adsorbate motions induced by inelastic-tunneling current: theoretical scenarios of twoelectron processes. J. Chem. Phys. 123, 084707 (2005)

    Article  Google Scholar 

  4. S.E. Rauch, F. Guarin, G. La Rosa, High-Vgs PFET DC hot-carrier mechanism and its relation to AC degradation. IEEE Trans. Device Mater. Reliab. 10, 40–46 (2010)

    Article  Google Scholar 

  5. A. Bravaix, V. Huard, F. Cacho, X. Federspiel, D. Roy, Hot-carrier degradation in decananometer CMOS nodes: from an energy driven to a unified current degradation modeling by multiple carrier degradation process, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  6. V. Huard, F. Cacho, X. Federspiel, P. Mora, Hot-carrier injection degradation in advanced CMOS nodes: a bottom-up approach to circuit and system reliability, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  7. S. Tyaginov, Physics-based modeling of hot-carrier degradation, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  8. S.E. Rauch1, F. Guarin, The energy driven hot carrier model, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  9. M. Bina, K. Rupp, The spherical harmonics expansion method for assessing hot carrier degradation, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  10. A. Zaka, P. Palestri, Q. Rafhay, R. Clerc, D. Rideau, L. Selmi, Semi-analytic modeling for hot carriers in electron devices, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  11. T. Aichinger, M. Nelhiebel, Characterization of MOSFET interface states using the charge pumping technique, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  12. G. Pobegen, Recovery from hot carrier induced degradation through temperature treatment, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  13. A.J. Scholten, B. De Vries, J. Bisschop, G.T. Sasse, Reliability simulation models for hot carrier degradation, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  14. C. Schlünder, Circuit reliability – hot carrier stress of MOS-transistors in different fields of application, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  15. S. Reggiani, G. Barone, E. Gnani, A. Gnudi, G. Baccarani, S. Poli, R. Wise, M.-Y. Chuang, W. Tian, S. Pendharkar, M. Denison, Characterization and modeling of high-voltage LDMOS transistors, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  16. F. Alagi, Compact modelling of the hot-carrier degradation of integrated HV MOSFETs, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  17. M. Cho, E. Bury, B. Kaczer, G. Groeseneken, Channel hot carrier degradation and self-heating effects in FinFETs, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  18. P.S. Chakraborty, J.D. Cressler, Hot-carrier degradation in silicon–germanium heterojunction bipolar transistors, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  19. J. Franco, B. Kaczer, Channel hot carriers in SiGe and Ge pMOSFETs, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser (Springer, New York, 2014, this volume)

    Google Scholar 

  20. J.W. Lyding, H. Hess, I.C. Kizilyalli, Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing. Appl. Phys. Lett. 68, 2526 (1996)

    Article  Google Scholar 

  21. T.G. Ference, J.S. Burnham, W.F. Clark, T.B. Hook, S.W. Mittle, K.M. Watson, L.-K. Han, The combined effects of deuterium anneals and deuterated barrier-nitride processing on hot-electron degradation in MOSFETs. IEEE Trans. Electron Devices 46, 747 (1999)

    Article  Google Scholar 

  22. J. Lee, K. Cheng, Z. Chen, K. Hess, J.W. Lyding, Y.-K. Kim, H.-S. Lee, Y.-W. Kim, K.-P. Suh, Application of high pressure deuterium annealing for improving the hot carrier reliability of CMOS transistors. IEEE Electron Device Lett. 21, 221 (2000)

    Article  Google Scholar 

  23. T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup, Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590 (1995)

    Article  Google Scholar 

  24. K. Hess, I.C. Kizilyalli, J.W. Lyding, Giant isotope effect in hot electron degradation of metal oxide silicon devices. IEEE Trans. Electron Device 45, 406 (1998)

    Article  Google Scholar 

  25. W. McMahon, Atomic-Scale Statistical Models of Semiconductor Device Reliability. PhD. Thesis, University of Illinois at Urbana-Champaign, 2001

    Google Scholar 

  26. P. Avouris, R.E. Walkup, A.R. Rossi, T.-C. Shen, G.C. Abeln, J.R. Tucker, J.W. Lyding, STM-induced H atom desorption from Si(100): isotope effects and site selectivity. Chem. Phy. Lett. 257, 148 (1996)

    Article  Google Scholar 

  27. C.G. Van de Walle, W.B. Jackson, Comment on reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing. App. Phys. Lett. 69, 2441 (1996)

    Article  Google Scholar 

  28. N.H.-H. Hsu, J.-W. You, H.-C. Ma, S.-C. Lee, E. Chen, L.S. Huang, Y.-C. Cheng, O. Cheng, I.C. Chen, Intrinsic hot-carrier degradation of nMOSFETs by decoupling PBTI component in 28 nm high-K/metal gate stacks, in IEEE International Reliability Physics Symposium, Anaheim (2013)

    Google Scholar 

  29. S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A. St Amour, C. Wiegand, Intrinsic transistor reliability improvements from 22 nm tri-gate technology, in IEEE International Reliability Physics Symposium, Anaheim (2013)

    Google Scholar 

  30. C. Hu, Lucky-electron model of channel hot electron emission, in IEEE International Electron Device Meeting, vol. 25, University of California, Berkeley (1979), p. 22

    Google Scholar 

  31. A. Plonka, Time-Dependent Reactivity of Species in Condensed Media (Springer, Berlin, 1986)

    Book  Google Scholar 

  32. A. Kerber, T. Nigam, Challenges in the characterization and modeling of BTI induced variability in metal gate/high-k CMOS technologies, in IEEE International Reliability Physics Symposium, Anaheim, 14–18 April (2013), p. 2D.4.1

    Google Scholar 

  33. P. Magnone, F. Crupi, N. Wils, R. Jain, H. Tuinhout, P. Andricciola, G. Giusi, C. Fiegna, Impact of hot carriers on nMOSFET variability in 45- and 65-nm CMOS technologies. IEEE Trans. Electron Devices 58(8), 2347–2353 (2011)

    Article  Google Scholar 

  34. W. McMahon, F. Chen, A. Bhavnagarwala, Reliability testing and test structure design in an age of increasing variability, in IIRW, South Lake Tahoe (2013)

    Google Scholar 

  35. K.N. Quader, E.R. Minami, W.-J. Huang, P.K. Ko, C. Hu, Hot-carrier-reliability design guidelines for CMOS logic circuits. Solid State Circuits 29, 253 (1994)

    Article  Google Scholar 

  36. X. Federspiel, M. Rafik, D. Angot, F. Cacho, D. Roy, Interaction between BTI and HCI degradation in High-K devices, in IEEE International Reliability Physics Symposium, Anaheim (2013)

    Google Scholar 

  37. C. Ma, H.J. Mattausch, M. Miyake, T. Iizuka, K. Matsuzawa, S. Yamaguchi, T. Hoshida, A. Kinoshita, T. Arakawa, J. He, M. Miura-Mattausch, Modeling of degradation caused by channel hot carrier and negative bias temperature instability effects in p-MOSFETs, in IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, Xi’an (2012)

    Google Scholar 

  38. A. Bravaix, Y. M. Randriamihaja, V. Huard, D. Angot, X. Federspiel, W. Arfaoui, P. Mora, F. Cacho, M. Saliva, C. Besset, S. Renard, D. Roy, E. Vincent, Impact of the gate-stack change from 40 nm node SiON to 28 nm high-K metal gate on the hot-carrier and bias temperature damage, in IEEE International Reliability Physics Symposium, Anaheim (2013)

    Google Scholar 

  39. G. LaRosa, S. Rauch, F. Guarin, S. Boffoli, Insights in the physical damage of VGS = VDS high-K PMOSFET degradation in AC switching conditions. IEEE Trans. Device Mater. Reliab. 13, 185 (2013)

    Article  Google Scholar 

  40. K. Hess, L.F. Register, W. McMahon, B. Tuttle, O. Aktas, U. Ravaioli, J.W. Lyding, I.C. Kizilyalli, Theory of channel hot-carrier degradation in MOSFETs. Physica B 272, 527 (1999)

    Article  Google Scholar 

  41. V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, C. Ouvrard, New characterization and modelling approach for NBTI degradation from transistor to product level, in IEEE International Electron Devices Meeting, Washington (2007)

    Google Scholar 

  42. C. Guerin, V. Huard, A. Bravaix, General framework about defect creation at the Si/SiO2 interface. J. Appl. Phys. 105, 114513 (2009)

    Article  Google Scholar 

  43. M. Cho, H. Arimura, W.L. Jae, B. Kaczer, A. Veloso, G. Boccardi, L.-A. Ragnarsson, T. Kauerauf, N. Horiguchi, G. Groeseneken, Improved channel hot-carrier reliability in p-FinFETs with replacement metal gate by a nitrogen postdeposition anneal process. IEEE Trans. Device Mater. Reliab. 14, 408–412 (2014)

    Article  Google Scholar 

  44. A. Rahman, P. Bai, G. Curello, J. Hicks, C.-H. Jan, M. Jamil, J. Park, K. Phoa, M.S. Rahman, C.~Tsai, B. Woolery, J.-Y. Yeh, Reliability studies of a 22 nm SoC platform technology featuring 3-D tri-gate, optimized for ultra low power, high performance and high density application, in IEEE International Reliability Physics Symposium (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William McMahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMahon, W., Mamy-Randriamihaja, Y., Vaidyanathan, B., Nigam, T., Pimparkar, N. (2015). From Atoms to Circuits: Theoretical and Empirical Modeling of Hot Carrier Degradation. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics