Skip to main content

Minimizing Cluster Errors in LP-Based Nonlinear Classification

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2014)

Abstract

Recent work has focused on techniques to construct a learning machine able to classify, at any given accuracy, all members of two mutually exclusive classes. Good numerical results have been reported; however, there remain some concerns regarding prediction ability when dealing with large data bases. This paper introduces clustering, which decreases the number of variables in the linear programming models that need be solved at each iteration. Preliminary results provide better prediction accuracy, while keeping the good characteristics of the previous classification scheme: a piecewise (non)linear surface that discriminates individuals from two classes with an a priori classification accuracy is built and at each iteration, a new piece of the surface is obtained by solving a linear programming (LP) model. The technique proposed in this work reduces the number of LP variables by linking one error variable to each cluster, instead of linking one error variable to each individual in the population. Preliminary numerical results are reported on real datasets from the Irvine repository of machine learning databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armato-III, S.G., Giger, M.L., MacMahon, H.: Automated detection of lung nodules in ct scans: preliminary results. Medical Physics 28(8), 1552–1561 (2001)

    Article  Google Scholar 

  2. Barros de Almeida, M., de Padua Braga, A., Braga, J.P.: SVM-KM: speeding svms learning with a priori cluster selection and k-means. In: Proceedings Sixth Brazilian Symposium on Neural Networks (November 2000)

    Google Scholar 

  3. Barzilay, O., Brailovsky, V.: On domain knowledge and feature selecion using a support vector machine. Pattern Recognition Letters 20, 475–484 (1999)

    Article  Google Scholar 

  4. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., Hausler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of The International Academy of Sciences of The United States of America 97, 262–267 (2000)

    Article  Google Scholar 

  5. Buchbinder, S., Leichter, I., Lederman, R., Novak, B., Bamberger, P., Sklair-Levy, M., Yarmish, G., Fields, S.: Computer-aided classifications of bi-rads category 3 breast lesions, radiology. Radiology 280, 820–823 (2004)

    Article  Google Scholar 

  6. Chau, M., Chen, H.: A machine learning approach to web page filtering using content and structure analysis. Decision Support Systems 44, 482–494 (2008)

    Article  Google Scholar 

  7. Cheung, K., Kwok, J.T., Law, M., Tsui, K.: Mining costumer product ratings for personalized marketing. Decision Support Systems 35, 231–243 (2003)

    Article  Google Scholar 

  8. Druker, H., Wu, D., Vapnik, V.: Support vector machines for spam categorization. IEEE Transactions on Neural Networks 10, 1048–1054 (1999)

    Article  Google Scholar 

  9. Espinal-Kohler, J.: Método multi-superficies para clasificación binaria con minimización de errores de grupos de datos. Master’s thesis. Universidad Simón Bolívar (2012)

    Google Scholar 

  10. Frank, A., Asunción, A.: Uci machine learning repository (2010), http://archive.ices.uci.edu/ml

  11. Fung, G., Mangasarian, O.L., Smola, A.: Minimal kernel classifiers. In: Shawe Taylor, J. (ed.), pp. 312–315 (2002)

    Google Scholar 

  12. García-Palomares, U.M., Manzanilla-Salazar, O.G.: Novel linear programming approach for building a piecewise nonlinear binary classifier with a priori accurancy. Decision Support Systems 51, 717–728 (2012)

    Article  Google Scholar 

  13. Ince, H., Trafalis, T.B.: A hybrid model for exchange rate prediction. Decision Support Systems 42, 1054–1062 (2006)

    Article  Google Scholar 

  14. Joachims, J.: Advances in kernel methods: support vector machines, ch. 11. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Li, X.: A scalable decision tree system and its application in pattern recognition and intrusion detection. Decision Support Systems 41, 1–32 (2005)

    Article  Google Scholar 

  16. Mangasarian, O.L.: Mathematical programing in neural networks. Journal on Computing 5, 349–360 (1993)

    MATH  Google Scholar 

  17. Mangasarian, O.L., Setonio, R., Wolberg, W.: Pattern recognition via linear programming: Theory and application in medical diagnosis. In: Coleman, T.F., Li, Y. (eds.) Proceedings of the Workshop on Large-Scale Numerical Optimization, pp. 22–31. SIAM (1990)

    Google Scholar 

  18. Nakayama, H., Yun, Y.B., Asada, T., Yoon, M.: Mop/gp mmodel for machine learning. European Journal of Operational Research 166, 756–768 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peng, Y., Kou, G., Chen, Z.: A multi-criteria convex quadratic programming model for credit data analysis. Decision Support Systems 44, 1016–1030 (2008)

    Article  Google Scholar 

  20. Stam, A., Rasgdale, C.T.: On the classification gap in mathematical programming-based approaches to the discriminant problem. Naval Research Logistics 39, 545–559 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sueyoshi, T.: Extended dea-discriminant analysis. European Journal of Operational Research 131, 324–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Trötscher, T.: Linear mixed integer program (September 2009), http://www.mathworks.com/matlabcentral/fileexchange/25259-linear-mixed-integer-program-solver

  23. Wang, J.: A linear assignment clustering algorithm based on the least similar cluster representatives. IEEE Transactions on Systems, Man and Cybernetics 29, 100–104 (1999)

    Article  Google Scholar 

  24. Wu, Q., Zhou, D.: The F ∞ -norm support vector machine. Statistica Sinica 18, 379–398 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Manzanilla-Salazar, O.G., Espinal-Kohler, J., García-Palomares, U.M. (2014). Minimizing Cluster Errors in LP-Based Nonlinear Classification. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2014. Lecture Notes in Computer Science(), vol 8556. Springer, Cham. https://doi.org/10.1007/978-3-319-08979-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08979-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08978-2

  • Online ISBN: 978-3-319-08979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics