Skip to main content

Intracellular Calcium as a Clock Output from SCN Neurons

  • Chapter
  • First Online:
Mechanisms of Circadian Systems in Animals and Their Clinical Relevance

Abstract

In mammals, the major circadian clock is located in the suprachiasmatic nuclei (SCN). The molecular oscillator in these neurons is driven by transcriptional–translational feedback loops (TTL) among clock genes that generate a circadian periodicity. To fulfill its role as pacemaker, the molecular oscillation must be translated to an electrical signal in SCN neurons, which will be transmitted to the rest of the brain and eventually the organism. The mechanisms involved in this process remain mostly unknown, but some information is already available. Among the ion channels in SCN neurons which are regulated by the circadian clock, only the manipulations of the fast delayed rectifier (fDR) and large-conductance (BK) K+ currents have shown to affect circadian rhythmicity either in neuronal firing pattern or behavior. On the other hand, data from rat and mouse clearly indicate that intracellular Ca2+ channels sensitive to ryanodine (RyR) are part of an output pathway of the clock in SCN neurons. Intracellular Ca2+ signals mediate between the molecular circadian clock and the neuronal plasma membrane of SCN neurons and thus can modulate the excitability and firing frequency according to the time of day. Intracellular Ca2+ mobilization through RyRs may affect neuronal excitability directly through Ca2+-modulated plasma membrane channels and indirectly as a second messenger activating protein kinases regulating a variety of cellular processes converging at the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Herzog ED, Yamazaki S et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22(1):350–356

    PubMed  CAS  Google Scholar 

  • Aguilar-Roblero R, Morin LP, Moore RY (1994) Morphological correlates of circadian rhythm restoration induced by transplantation of the suprachiasmatic nucleus in hamsters. Exp Neurol 136:1–11

    Google Scholar 

  • Aguilar-Roblero R, Mercado C, Alamilla J et al (2007) Ryanodine receptor Ca2+-release channels are an output pathway for the circadian clock in the rat suprachiasmatic nuclei. Eur J Neurosci 26(3):575–582

    Article  PubMed  Google Scholar 

  • Aguilar-Roblero R, Alamilla J, Mercado C et al (2009) Neuronal activity in the suprachiasmatic nuclei: cellular and molecular mechanisms. In: Fanjul-Moles ML, Aguilar-Roblero R (eds) Comparative aspects of circadian rhythms. Research Signpost, Kerala, India, pp 185–203

    Google Scholar 

  • Akasu T, Shoji S, Hasuo H (1993) Inward rectifier and low-threshold calcium currents contribute to the spontaneous firing mechanism in neurons of the rat suprachiasmatic nucleus. Pflugers Arch 425:109–116

    Article  PubMed  CAS  Google Scholar 

  • Atkinson SE, Maywood ES, Chesham JE et al (2011) Cyclic AMP signalling controls action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. J Biol Rhythms 26(3):210–220

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Bouskila Y, Dudek FE (1995) A rapidly activating type of outward rectifier K+ current and A-current in rat suprachiasmatic nucleus neurons. J Physiol 488(2):339–350

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown TM, Piggins HD (2007) Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 82(5):229–255

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Kowalska E, Dallham R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22:477–487

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E, Santella L, Branca D et al (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36(2):107–260

    Article  PubMed  CAS  Google Scholar 

  • Chu A, Díaz-Muñoz M, Hawkes MJ et al (1990) Ryanodine as a probe for the functional state of the skeletal muscle reticulum calcium release channel. Mol Pharmacol 37:735–741

    PubMed  CAS  Google Scholar 

  • Cloues RK, Sather WA (2003) Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci 23(5):1593–1604

    PubMed  CAS  Google Scholar 

  • Colwell CS (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12:571–576

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12:553–569

    Article  PubMed  CAS  Google Scholar 

  • de Jeu MT, Pennartz CM (1997) Functional characterization of the H-current in SCN neurons in subjective day and night: a whole-cell patch-clamp study in acutely prepared brain slices. Brain Res 767:72–80

    Article  PubMed  Google Scholar 

  • de Jeu M, Geurtsen A, Pennartz C (2002) A Ba(2+)-sensitive K(+) current contributes to the resting membrane potential of neurons in rat suprachiasmatic nucleus. J Neurophysiol 88(2):869–878

    PubMed  Google Scholar 

  • Díaz-Muñoz M, Dent A, Granados-Fuentes D et al (1999) Circadian modulation of the ryanodine receptor type 2 in the SCN of rodents. Neuroreport 10:481–486

    Article  PubMed  Google Scholar 

  • Ding JM, Chen D, Weber ET et al (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191):1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Ding JM, Buchanan GF, Tischkau SA et al (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colín R, Aguilar-Roblero R, García-Hernández F et al (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311:353–357

    Article  PubMed  Google Scholar 

  • Ebner-Bennatan S, Patrich E, Peretz A et al (2012) Multifaceted modulation of K+ channels by protein-tyrosine phosphatase ε tunes neuronal excitability. J Biol Chem 287(33):27614–27628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evans JA, Leise TL, Castanon-Cervantes O et al (2011) Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS One 6:e15869. doi:10.1371/journal.pone.0015869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finkbeiner S, Greenberg ME (1998) Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37(1):171–189

    Article  PubMed  CAS  Google Scholar 

  • Foley NC, Tong TY, Foley D et al (2011) Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci 33:1851–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245(1):198–200

    Article  PubMed  CAS  Google Scholar 

  • He C, Chen F, Li B et al (2013) Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol. doi:10.1016/j.pneurobio.2013.10.001, pii: S0301-0082(13)00101-9 [Epub ahead of print]

    PubMed  Google Scholar 

  • Huang RC (1993) Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus. J Neurophysiol 70(4):1692–1703

    PubMed  CAS  Google Scholar 

  • Hurst WJ, Mitchell JW, Gillette MU (2002) Synchronization and phase-resetting by glutamate of an immortalized SCN cell line. Biochem Biophys Res Commun 298(1):133–143

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Sugiyama T, Wallace CS (2003) Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38:253–263

    Article  PubMed  CAS  Google Scholar 

  • Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76(11):5962–5966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Itri JN, Michel S, Vansteensel MJ et al (2005) Fast delayed rectifier potassium current is required for circadian neural activity. Nat Neurosci 8:650–856

    Article  PubMed  CAS  Google Scholar 

  • Izumo M, Johnson CH, Yamazaki S (2003) Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc Natl Acad Sci U S A 100(26):16089–16094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson AC, Yao GL, Bean BP (2004) Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons. J Neurosci 24:7985–7998

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Choe Y, Kim H et al (2003) Involvement of CLOCK:BMAL1 heterodimer in serum-responsive mPer1 induction. Neuroreport 14(1):15–19

    Article  PubMed  CAS  Google Scholar 

  • Kent J, Meredith AL (2008) BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One 3(12):e3884. doi:10.1371/journal.pone.0003884

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein DC, Moore RY, Reepert S (eds) (1991) Suprachiasmatic nucleus. The mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Kononenko I, Medina I, Dudek FE (2004a) Persistent subthreshold voltage-dependent cation single channels in suprachiasmatic nucleus neurons. Neuroscience 129:85–92

    Article  PubMed  CAS  Google Scholar 

  • Kononenko NI, Shao LR, Dudek FE (2004b) Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons. J Neurophysiol 91:710–718

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Loh DH, Kuljis D et al (2011) Fast delayed rectifier potassium current: critical for input and output of the circadian system. J Neurosci 31(8):2746–2755

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21(6):470–481

    Article  PubMed  CAS  Google Scholar 

  • Kyle BD, Hurst S, Swayze RD et al (2013) Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)-activated K(+) channel by cGMP-dependent protein kinase. FASEB J 27(5):2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Lee H-M, Chen R, Kim H et al (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108(39):16451–16456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR et al (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7(6):1626–1638

    PubMed  CAS  Google Scholar 

  • Loh DH, Dragich JM, Kudo T et al (2011) Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. J Biol Rhythms 26(3):200–209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lundkvist GB, Kwak Y, Davis EK et al (2005) A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci 25:7682–7686

    Article  PubMed  CAS  Google Scholar 

  • Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578(Pt 2):377–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 142(6):1395–1398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Menaker M, Takahashi JS, Eskin A (1978) The physiology of circadian pacemakers. Annu Rev Physiol 40:501–526

    Article  PubMed  CAS  Google Scholar 

  • Mercado C, Díaz-Muñoz M, Alamilla J et al (2009) Ryanodine-sensitive intracellular Ca2+ channels in rat suprachiasmatic nuclei are required for circadian clock control of behavior. J Biol Rhythms 24(3):203–210

    Article  PubMed  CAS  Google Scholar 

  • Meredith AL, Wiler SW, Miller BH et al (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9(8):1041–1049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Montgomery JR, Meredith AL (2012) Genetic activation of BK currents in vivo generates bidirectional effect on neuronal excitability. Proc Natl Acad Sci U S A 109(46):18997–19002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  • Nahm SS, Farnell YZ, Griffith W et al (2005) Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci 25(40):9304–9308

    Article  PubMed  CAS  Google Scholar 

  • Nakamura W, Yamazaki S, Takasu NN et al (2005) Differential response of Period 1 expression within the suprachiasmatic nucleus. J Neurosci 25(23):5481–5487

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872

    Article  PubMed  CAS  Google Scholar 

  • Nishide SY, Honma S, Nakajima Y et al (2006) New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues. Genes Cells 11(10):1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JS, Maywood ES, Chesham JE et al (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflugers Arch 454(3):361–371

    Article  PubMed  CAS  Google Scholar 

  • Pennartz CM, Bierlaagh MA, Geurtsen AM (1997) Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J Neurophysiol 78:1811–1825

    PubMed  CAS  Google Scholar 

  • Pennartz CM, de Jeu MT, Bos NP et al (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416(6878):286–290

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer M, Müller CM, Mordel J et al (2009) The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J Neurosci 29(19):6114–6123

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54

    Article  PubMed  CAS  Google Scholar 

  • Pitts GR, Ohta H, McMahon DG (2006) Daily rhythmicity of large-conductance Ca2+-activated K+ currents in suprachiasmatic nucleus neurons. Brain Res 1071:54–62

    Article  PubMed  CAS  Google Scholar 

  • Pralong WF, Spät A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269(44):27310–27314

    PubMed  CAS  Google Scholar 

  • Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC et al (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R (2001) Intracellular Ca(2+) pools in neuronal signalling. Curr Opin Neurobiol 11(3):306–311

    Article  PubMed  CAS  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24(9):517–526

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Groos G (1982) Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215(4538):1407–1409

    Article  PubMed  CAS  Google Scholar 

  • Sang-Soep N, Farnell YZ, Griffith W et al (2005) Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci 25:9304–9308

    Article  Google Scholar 

  • Schaap J, Pennartz C, Meijer JH (2003) Electrophysiology of the circadian pacemaker in mammals. Chonobiol Int 20(2):171–188

    Article  Google Scholar 

  • Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197(4308):1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Moore RY (1994) Calmodulin inhibitors produce phase shifts of circadian rhythms in vivo and in vitro. J Biol Rhythms 9(1):27–41

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Oomura Y, Kita H et al (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247(1):154–158

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Liou SY, Ueki S (1983) Development of the circadian rhythm of neuronal activity in suprachiasmatic nucleus of rat hypothalamic slices. Neurosci Lett 43(2–3):231–234

    Article  PubMed  CAS  Google Scholar 

  • Smart TG (1997) Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 3:358–367

    Article  Google Scholar 

  • Spitzer NC (2002) Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J Physiol Paris 96(1–2):73–80

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teshima K, Kim SH, Allen CN (2003) Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. Neuroscience 120:65–73

    Article  PubMed  CAS  Google Scholar 

  • Vandael DH, Marcantoni A, Mahapatra S et al (2010) Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 42:185–198

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M et al (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  PubMed  CAS  Google Scholar 

  • Wilsbacher LD, Yamazaki S, Herzog ED et al (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc Natl Acad Sci U S A 99(1):489–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Okamura H (2002) Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 15:1153–1162

    Article  PubMed  Google Scholar 

  • Yoo SH, Yamasaky S, Lowry PL et al (2003) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  Google Scholar 

Download references

Acknowledgments

We thank José Luis Chávez, Ana María Escalante, and Francisco Pérez for skillful technical assistance. This work was partially supported by grants from CONACyT 128528, PAPIIT IN204811, and FONCICYT 91984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Aguilar-Roblero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aguilar-Roblero, R., Díaz-Muñoz, M., Báez-Ruíz, A., Quinto-Muñoz, D., Lundkvist, G., Michel, S. (2015). Intracellular Calcium as a Clock Output from SCN Neurons. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_7

Download citation

Publish with us

Policies and ethics