Skip to main content

Effects of Circadian Disruption on Physiology and Pathology: From Bench to Clinic (and Back)

  • Chapter
  • First Online:

Abstract

Nested within the hypothalamus, the suprachiasmatic nuclei (SCN) represent a central biological clock that regulates daily and circadian (i.e., close to 24 h) rhythms in mammals. Besides the SCN, a number of peripheral oscillators throughout the body control local rhythms and are usually kept in pace by the central clock. In order to represent an adaptive value, circadian rhythms must be entrained by environmental signals or zeitgebers, the main one being the daily light–dark (LD) cycle. The SCN adopt a stable phase relationship with the LD cycle that, when challenged, results in abrupt or chronic changes in overt rhythms and, in turn, in physiological, behavioral, and metabolic variables. Changes in entrainment, both acute and chronic, may have severe consequences in human performance and pathological outcome. Indeed, animal models of desynchronization have become a useful tool to understand such changes and to evaluate potential treatments in human subjects. Here we review a number of alterations in circadian entrainment, including jet lag, social jet lag (i.e., desynchronization between body rhythms and normal time schedules), shift work, and exposure to nocturnal light, both in human subjects and in laboratory animals. Finally, we focus on the health consequences related to circadian/entrainment disorders and propose a number of approaches for the management of circadian desynchronization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adan A, Archer SN, Hidalgo MP et al (2012) Circadian typology: a comprehensive review. Chronobiol Int 29:1153–1175

    Article  PubMed  Google Scholar 

  • Agostino PV, Plano SA, Golombek DA (2007) Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc Nat Acad Sci USA 104:9834–9839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Akashi M, Tsuchiya Y, Yoshino T et al (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 22:1693–1703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Akerstedt T, Wright KP Jr (2009) Sleep loss and fatigue in shift work and shift work disorder. Sleep Med Clin 4:257–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson C, Platten CR (2011) Sleep deprivation lowers inhibition and enhances impulsivity to negative stimuli. Behav Brain Res 217:463–466

    Article  PubMed  Google Scholar 

  • Anea CB, Zhang M, Stepp DW et al (2009) Vascular disease in mice with a dysfunctional circadian clock. Circulation 119:1510–1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trend Neurosci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  • Archer SN, Robilliard DL, Skene DJ et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415

    PubMed  Google Scholar 

  • Arendt J (2009) Managing jet-lag: Some of the problems and possible new solutions. Sleep Med Rev 13:249–256

    Article  PubMed  Google Scholar 

  • Arendt J (2010) Shift work: coping with the biological clock. Occup Med (Lond) 60:10–20

    Article  Google Scholar 

  • Aschoff J (1965) Circadian rhythms in man: a self-sustained oscillator with an inherent frequency underlies human 24-hour periodicity. Science 148:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J, Wever R (1981) The circadian system of man. In: Aschoff J (ed) Handbook of Behavioral Neurobiology. Plenun Press, New York, pp 311–350

    Google Scholar 

  • Aschoff J, Hoffmann K, Pohl H et al (1975) Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber. Chronobiol 2:23–78

    CAS  Google Scholar 

  • Aton SJ, Herzog ED (2005) Come together, right…now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aydin A, Selvi Y, Besiroglu L et al (2013) Mood and metabolic consequences of sleep deprivation as a potential endophenotype' in bipolar disorder. J Affect Dis 150:284–294

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  PubMed  CAS  Google Scholar 

  • Becquet D, Girardet C, Guillaumond F et al (2008) Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment Glia 56:294–305

    Google Scholar 

  • Bedrosian TA, Fonken LK, Walton JC et al (2011) Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol Lett 7:468–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Blask DE, Dauchy RT, Brainard GC et al (2009) Circadian stage-dependent inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences of its disruption by light at night in rats and women. Int Cancer Ther 8:347–353

    Article  CAS  Google Scholar 

  • Boivin DB, James FO (2002) Circadian adaptation to night-shift work by judicious light and darkness exposure. J Biol Rhyth 17:556–567

    Article  Google Scholar 

  • Boivin DB, James FO, Wu A et al (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    Article  PubMed  CAS  Google Scholar 

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhyth 14:557–568

    CAS  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F et al (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Wortel J, Van Heerikhuize JJ et al (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Butcher GQ, Lee B, Cheng HY et al (2005) Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. J Neurosci 25:5305–5313

    Article  PubMed  CAS  Google Scholar 

  • Cambras T, Weller JR, Angles-Pujoras M et al (2007) Circadian desynchronization of core body temperature and sleep stages in the rat. Proc Nat Acad Sci USA 104:7634–7639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campuzano A, Vilaplana J, Cambras T et al (1998) Dissociation of the rat motor activity rhythm under T cycles shorter than 24 hours. Physiol Behav 63:171–176

    Article  PubMed  CAS  Google Scholar 

  • Casiraghi LP, Oda GA, Chiesa JJ et al (2012) Forced desynchronization of activity rhythms in a model of chronic jet-lag in mice. J Biol Rhythm 27:59–69

    Article  Google Scholar 

  • Castañon-Cervantes O, Wu M, Ehlen JC et al (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 185:5796–5805

    Article  PubMed  PubMed Central  Google Scholar 

  • Cermakian N, Lange T, Golombek D et al (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30:870–888

    Article  PubMed  CAS  Google Scholar 

  • Chang AM, Santhi N, St Hilaire M et al (2012) Human responses to bright light of different durations. J Physiol 590:3103–3112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiesa JJ, Cambras T, Carpentieri AR et al (2010) Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. J Biol Rhythm 25:37–46

    Article  Google Scholar 

  • Cho K, Ennaceur A, Cole JC et al (2000) Chronic jet-lag produces cognitive deficits. J Neurosci 20:RC66–RC78

    PubMed  CAS  Google Scholar 

  • Czeisler CA, Dijk DJ (1995) Use of bright light to treat maladaptation to night shift work and circadian rhythm sleep disorders. J Sleep Res 4:70–73

    Article  PubMed  Google Scholar 

  • Dallmann R, Weaver DR (2010) Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int 27:1317–1328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dallmann R, Touma C, Palme R et al (2006) Impaired daily glucocorticoid rhythm in Per1 ( Brd ) mice. J Comp Physiol A 192:769–775

    Article  CAS  Google Scholar 

  • Damiola F, Le Minh N, Preitner N et al (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Develop 14:2950–2961

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dauvilliers Y, Tafti M (2008) The genetic basis of sleep disorders. Curr Pharmaceut Des 14:3386–3395

    Article  CAS  Google Scholar 

  • Davidson AJ, London B, Block GD et al (2005) Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens 27:307–311

    Article  PubMed  CAS  Google Scholar 

  • Davidson AJ, Sellix MT, Daniel J et al (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16:R914–916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson AJ, Castañon-Cervantes O, Leise TL et al (2009) Visualizing jet-lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29:171–180

    Article  PubMed  Google Scholar 

  • de la Iglesia HO, Meyer J, Carpino A Jr et al (2000) Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290:799–801

    Article  PubMed  Google Scholar 

  • de la Iglesia HO, Cambras T, Schwartz WJ et al (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14:796–800

    Article  PubMed  CAS  Google Scholar 

  • Delezie J, Challet E (2011) Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann New York Acad Sci 1243:30–46

    Article  CAS  Google Scholar 

  • Dey J, Carr AJ, Cagampang FR et al (2005) The tau mutation in the Syrian hamster differentially reprograms the circadian clock in the SCN and peripheral tissues. J Biol Rhythm 20:99–110

    Article  CAS  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Ann Rev Physiol 72:517–549

    Article  CAS  Google Scholar 

  • Doi M, Takahashi Y, Komatsu R et al (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 16:67–74

    Article  PubMed  CAS  Google Scholar 

  • Drijfhout WJ, Brons HF, Oakley N et al (1997) A microdialysis study on pineal melatonin rhythms in rats after an 8-h phase advance: new characteristics of the underlying pacemaker. Neuroscience 80:233–239

    Article  PubMed  CAS  Google Scholar 

  • Dziema H, Oatis B, Butcher GQ et al (2003) The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur J Neurosci 17:1617–1627

    Article  PubMed  Google Scholar 

  • Ebisawa T, Uchiyama M, Kajimura N et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2:342–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eckel-Mahan K, Sassone-Corsi P (2009) Metabolism control by the circadian clock and vice versa. Nat Struc Mol Biol 16:462–467

    Article  CAS  Google Scholar 

  • Eide EJ, Vielhaber EL, Hinz WA et al (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J Biol Chem 277:17248–17254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Enck P, Muller-Sacks E, Holtmann G et al (1995) Gastrointestinal problems in airline crew members. Zeit Gastroenterol 33:513–516

    CAS  Google Scholar 

  • Filipski E, King VM, Li X et al (2003) Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol 51:216–219

    Article  PubMed  Google Scholar 

  • Filipski E, Delaunay F, King VM et al (2004) Effects of chronic jet-lag on tumor progression in mice. Cancer Res 64:7879–7885

    Article  PubMed  CAS  Google Scholar 

  • Filipski E, Subramanian P, Carriere J et al (2009) Circadian disruption accelerates liver carcinogenesis in mice. Mut Res 680:95–105

    Article  CAS  Google Scholar 

  • Folkard S (2008) Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiol Int 25:215–224

    Article  PubMed  Google Scholar 

  • Fonken LK, Workman JL, Walton JC et al (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA 107:18664–18669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fonken LK, Kitsmiller E, Smale L et al (2012) Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythm 27:319–327

    Article  Google Scholar 

  • Fortier EE, Rooney J, Dardente H et al (2011) Circadian variation of the response of T cells to antigen. J Immunol 187:6291–6300

    Article  PubMed  CAS  Google Scholar 

  • Foster RG (2012) Biological clocks: who in this place set up a sundial? Curr Biol 22:R405–407

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Pelicano H, Liu J et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    Article  PubMed  CAS  Google Scholar 

  • Gachon F, Olela FF, Schaad O et al (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Met 4:25–36

    Article  CAS  Google Scholar 

  • Gale JE, Cox HI, Qian J et al (2011) Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythm 26:423–433

    Article  Google Scholar 

  • Gangwisch JE (2009) Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. Obes Rev 10:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  • García JA, Zhang D, Estill SJ et al (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    Article  PubMed  Google Scholar 

  • Gibson EM, Williams WP 3rd, Kriegsfeld LJ (2009) Aging in the circadian system: considerations for health, disease prevention and longevity. Exp Gerontol 44:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson EM, Wang C, Tjho S et al (2010) Experimental 'jet-lag' inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PloS One 5:e15267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goel N, Stunkard AJ, Rogers NL et al (2009) Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythm 24:85–94

    Article  CAS  Google Scholar 

  • Golombek DA (2012) Chapter 32 – Circadian rhythms and autonomic function. In: David R, Italo B, Geoffrey B, Phillip AL, Julian FR, Paton A, David R, Julian FRP (eds) Primer on the autonomic nervous system, 3rd edn. Academic, San Diego, pp 157–159

    Chapter  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Article  PubMed  CAS  Google Scholar 

  • Golombek DA, Agostino PV, Plano SA et al (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neuroch Int 45:929–936

    Article  CAS  Google Scholar 

  • Golombek DA, Casiraghi LP, Agostino PV et al (2013) The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107:310–322

    Article  PubMed  Google Scholar 

  • Gooley JJ, Chamberlain K, Smith KA et al (2011) Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Met 96:463–472

    Article  CAS  Google Scholar 

  • Guess J, Burch JB, Ogoussan K et al (2009) Circadian disruption, Per3, and human cytokine secretion. Int Cancer Ther 8:329–336

    Article  CAS  Google Scholar 

  • Ha M, Park J (2005) Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health 47:89–95

    Article  PubMed  Google Scholar 

  • Hadden H, Soldin SJ, Massaro D (2012) Circadian disruption alters mouse lung clock gene expression and lung mechanics. J Appl Physiol 113:385–392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harrington M (2010) Location, location, location: important for jet-lagged circadian loops. J Clin Invest 120:2265–2267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haus E, Smolensky MH (1999) Biologic rhythms in the immune system. Chronobiol Int 16:581–622

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30:621–626

    Article  PubMed  CAS  Google Scholar 

  • Hazlerigg D (2012) The evolutionary physiology of photoperiodism in vertebrates. Progr Brain Res 199:413–422

    Article  CAS  Google Scholar 

  • Higashi T, Sakurai H, Satoh T et al (1988) Absenteeism of shift and day workers with special reference to peptic ulcer. Asia-Pacific J Public Health/Asia-Pacific Academic Consortium for Public Health 2:112–119

    Article  CAS  Google Scholar 

  • Hirai K, Kita M, Ohta H et al (2005) Ramelteon (TAK-375) accelerates reentrainment of circadian rhythm after a phase advance of the light-dark cycle in rats. J Biol Rhythm 20:27–37

    Article  CAS  Google Scholar 

  • Honma S, Ono D, Suzuki Y et al (2012) Suprachiasmatic nucleus: cellular clocks and networks. Progr Brain Res 199:129–141

    Article  Google Scholar 

  • Hoogerwerf WA (2010) Role of clock genes in gastrointestinal motility. Am J Physio (Gast Liver Physiol) 299:G549–G555

    Article  CAS  Google Scholar 

  • Hoogerwerf WA, Hellmich HL, Cornelissen G et al (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Howland RH (2009) An overview of seasonal affective disorder and its treatment options. Phys Sport Med 37:104–115

    Article  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B et al (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • IARC WHO (2010) Monographs on the evaluation of carcinogenic risks to humans Painting, firefighting, and shiftwork. Lyon, France

    Google Scholar 

  • Johnson CH, Elliott JA, Foster R (2003) Entrainment of circadian programs. Chronobiol Int 20:741–774

    Article  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. Handb Exp Pharmacol 217:185–226

    Article  PubMed  Google Scholar 

  • Kalsbeek A, Scheer FA, Perreau-Lenz S et al (2011) Circadian disruption and SCN control of energy metabolism. FEBS Lett 585:1412–1426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karatsoreos IN, Bhagat S, Bloss EB et al (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA 108:1657–1662

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kessler EJ, Sprouse J, Harrington ME (2008) NAN-190 potentiates the circadian response to light and speeds re-entrainment to advanced light cycles. Neuroscience 154:1187–1194

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiessling S, Eichele G, Oster H (2010) Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet-lag. J Clin Invest 120:2600–2609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knutsson A (2003) Health disorders of shift workers. Occup Med 53:103–108

    Article  Google Scholar 

  • Knutsson A, Boggild H (2000) Shiftwork and cardiovascular disease: review of disease mechanisms. Rev Environ Health 15:359–372

    Article  PubMed  CAS  Google Scholar 

  • Kolla BP, Auger RR (2011) Jet-lag and shift work sleep disorders: how to help reset the internal clock. Cleveland Clin J Med 78:675–684

    Article  Google Scholar 

  • Koller M (1983) Health risks related to shift work. An exam of long time-contingent effects of long-term stress. Int Arch Occup Environ Health 53(1):59–75

    Google Scholar 

  • Kondratova AA, Dubrovsky YV, Antoch MP et al (2010) Circadian clock proteins control adaptation to novel environment and memory formation. Aging 2:285–297

    PubMed  CAS  Google Scholar 

  • Konturek PC, Brzozowski T, Konturek SJ (2011) Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol 62:139–150

    PubMed  CAS  Google Scholar 

  • Korompeli A, Sourtzi P, Tzavara C et al (2009) Rotating shift-related changes in hormone levels in intensive care unit nurses. J Adv Nurs 65:1274–1282

    Article  PubMed  Google Scholar 

  • Kott J, Leach G, Yan L (2012) Direction-dependent effects of chronic “jet-lag” on hippocampal neurogenesis. Neurosci Lett 515:177–180

    Article  PubMed  CAS  Google Scholar 

  • Krueger JM, Majde JA, Obal F (2003) Sleep in host defense. Brain Behav Immun 17(Suppl 1):S41–S47

    Article  PubMed  CAS  Google Scholar 

  • Lall GS, Atkinson LA, Corlett SA et al (2012) Circadian entrainment and its role in depression: a mechanistic review. J Neural Transm 119:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–15177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee C, Etchegaray JP, Cagampang FR et al (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Smith MR, Eastman CI (2006) A compromise phase position for permanent night shift workers: circadian phase after two night shifts with scheduled sleep and light/dark exposure. Chronobiol Int 23:859–875

    Article  PubMed  Google Scholar 

  • Lee ML, Swanson BE, de la Iglesia HO (2009) Circadian timing of REM sleep is coupled to an oscillator within the dorsomedial suprachiasmatic nucleus. Curr Biol 19:848–852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S, Donehower LA, Herron AJ et al (2010) Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PloS One 5:e10995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeGates TA, Altimus CM, Wang H et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:594–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levandovski R, Dantas G, Fernandes L et al (2011) Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol Int 28:771–778

    Article  PubMed  Google Scholar 

  • Li JC, Xu F (1997) Influences of light-dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin. Biol Signal 6:77–89

    Article  Google Scholar 

  • Li JD, Hu WP, Zhou QY (2012) The circadian output signals from the suprachiasmatic nuclei. Progr Brain Res 199:119–127

    Article  CAS  Google Scholar 

  • Liu J, Malkani G, Shi X et al (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74:4750–4756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lo SH, Lin LY, Hwang JS et al (2010) Working the night shift causes increased vascular stress and delayed recovery in young women. Chronobiol Int 27:1454–1468

    Article  PubMed  Google Scholar 

  • Logan RW, Zhang C, Murugan S et al (2012a) Chronic shift-lag alters the Circadian Clock of NK cells and promotes lung cancer growth in rats. J Immunol 188:2572–2582

    Article  CAS  Google Scholar 

  • Logan RW, Zhang C, Murugan S et al (2012b) Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol 188:2583–2591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Logan RW, Wynne O, Levitt D et al (2013) Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1(−/−) mutant mice. J Interf Cytok Res 33:108–114

    Article  CAS  Google Scholar 

  • Loh DH, Navarro J, Hagopian A et al (2010) Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PloS One 5:e18540

    Article  CAS  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lucas RJ, Stirland JA, Darrow JM et al (1999) Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology 140:758–764

    PubMed  CAS  Google Scholar 

  • Ma WP, Cao J, Tian M et al (2007) Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci Res 59:224–230

    Article  PubMed  Google Scholar 

  • Machi MS, Staum M, Callaway CW et al (2012) The relationship between shift work, sleep, and cognition in career emergency physicians. Acad Emerg Med 19:85–91

    Article  PubMed  Google Scholar 

  • Majde JA, Krueger JM (2005) Links between the innate immune system and sleep. J Allerg Clin Immunol 116:1188–1198

    Article  CAS  Google Scholar 

  • Malloy JN, Paulose JK, Li Y et al (2012) Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators. Am J Physiol Gastrointest Liver Physiol 303:G461–473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Markwald RR, Melanson EL, Smith MR et al (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci USA 110:5695–5700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martino TA, Oudit GY, Herzenberg AM et al (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Reg Integ Compar Physiol 294:R1675–1683

    Article  CAS  Google Scholar 

  • Mazzoccoli G, Francavilla M, Pazienza V et al (2012) Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach. Chronobiol Int 29:1300–1311

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ, Zelinski EL, Keeley RJ et al (2013) Multiple effects of circadian dysfunction induced by photoperiod shifts: Alterations in context memory and food metabolism in the same subjects. Physiol Behav 118:14–24

    Article  PubMed  CAS  Google Scholar 

  • Menaker M (2006) Circadian organization in the real world. Proc Natl Acad Sci USA 103:3015–3016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meng QJ, Logunova L, Maywood ES et al (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mercado C, Díaz-Muñoz M, Alamilla J et al (2009) Ryanodine-sensitive intracellular Ca2+ channels in rat suprachiasmatic nuclei are required for circadian clock control of behavior. J Biol Rhythm 24:203–210

    Article  CAS  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Ann Rev Neurosci 35:445–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mohren DC, Jansen NW, Kant IJ et al (2002) Prevalence of common infections among employees in different work schedules. J Occup Environ Med/Am Coll Occup Environ Med 44:1003–1011

    Article  Google Scholar 

  • Moller-Levet CS, Archer SN, Bucca G et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci USA 110:1132–1141

    Article  Google Scholar 

  • Moore RY (1996) Neural control of the pineal gland. Behav Brain Res 73:125–130

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede M, Sulzman F (1981) Internal temporal order. In: Aschoff J (ed) Biological rhythms. Springer, New York, NY, pp 215–241

    Chapter  Google Scholar 

  • Mormont MC, Levi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70:241–247

    Article  PubMed  CAS  Google Scholar 

  • Morris CJ, Aeschbach D, Scheer FA (2012a) Circadian system, sleep and endocrinology. Mol Cell Endocrinol 349:91–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morris CJ, Yang JN, Scheer FA (2012b) The impact of the circadian timing system on cardiovascular and metabolic function. Progr Brain Res 199:337–358

    Article  CAS  Google Scholar 

  • Nagai M, Morikawa Y, Kitaoka K et al (2011) Effects of fatigue on immune function in nurses performing shift work. J Occup Health 53:312–319

    Article  PubMed  Google Scholar 

  • Nagano M, Adachi A, Nakahama K et al (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151

    PubMed  CAS  Google Scholar 

  • Nakamura K, Shimai S, Kikuchi S et al (1997) Shift work and risk factors for coronary heart disease in Japanese blue-collar workers: serum lipids and anthropometric characteristics. Occup Med (Lond) 47:142–146

    Article  CAS  Google Scholar 

  • Nakamura W, Yamazaki S, Takasu NN et al (2005) Differential response of Period 1 expression within the suprachiasmatic nucleus. J Neurosci 25:5481–5487

    Article  PubMed  CAS  Google Scholar 

  • Narasimamurthy R, Hatori M, Nayak SK et al (2012) Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA 109:12662–12667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nedeltcheva AV, Kessler L, Imperial J et al (2009) Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metabol 94:3242–3250

    Article  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–2108

    Article  PubMed  CAS  Google Scholar 

  • Nievergelt CM, Kripke DF, Barrett TB et al (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Gen Part B 141B:234–241

    Article  CAS  Google Scholar 

  • Nojkov B, Rubenstein JH, Chey WD et al (2010) The impact of rotating shift work on the prevalence of irritable bowel syndrome in nurses. Am J Gastroenterol 105:842–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Obrietan K, Impey S, Smith D et al (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274:17748–17756

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Yamazaki S, McMahon DG (2005) Constant light desynchronizes mammalian clock neurons. Nat Neurosci 8:267–269

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Ohkura N (2013) Chronic circadian clock disruption induces expression of the cardiovascular risk factor plasminogen activator inhibitor-1 in mice. Blood Coag Fibrinol 24:106–108

    Article  CAS  Google Scholar 

  • Okawa M, Uchiyama M (2007) Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24 h sleep-wake syndrome. Sleep Med Rev 11:485–496

    Article  PubMed  Google Scholar 

  • O'Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panda S, Antoch MP, Miller BH et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  • Partonen T, Treutlein J, Alpman A et al (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238

    Article  PubMed  CAS  Google Scholar 

  • Paul MA, Miller JC, Love RJ et al (2009) Timing light treatment for eastward and westward travel preparation. Chronobiol Int 26:867–890

    Article  PubMed  CAS  Google Scholar 

  • Paul MA, Miller JC, Gray GW, Love RJ, Lieberman HR, Arendt J (2010) Melatonin treatment for eastward and westward travel preparation. Psychopharmacol 208:377–386

    Article  CAS  Google Scholar 

  • Pereira DS, Tufik S, Louzada FM et al (2005) Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep 28:29–32

    PubMed  Google Scholar 

  • Pierard C, Beaumont M, Enslen M et al (2001) Resynchronization of hormonal rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin. Eur J Appl Physiol 85:144–150

    Article  PubMed  CAS  Google Scholar 

  • Pietroiusti A, Forlini A, Magrini A et al (2006) Shift work increases the frequency of duodenal ulcer in H pylori infected workers. Occup Environ Med 63:773–775

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pizzio GA, Hainich EC, Ferreyra GA et al (2003) Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN. Neuroreport 14:1417–1419

    Article  PubMed  CAS  Google Scholar 

  • Plano SA, Golombek DA, Chiesa JJ (2010) Circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei. Eur J Neurosci 31:876–882

    Article  PubMed  Google Scholar 

  • Plano SA, Agostino PV, de la Iglesia HO et al (2012) cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents. PloS One 7:e37121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polidarova L, Sladek M, Sotak M et al (2011) Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int 28:204–215

    Article  PubMed  CAS  Google Scholar 

  • Preuss F, Tang Y, Laposky AD et al (2008) Adverse effects of chronic circadian desynchronization in animals in a “challenging” environment. Am J Physiol (Reg Int Comp Physiol) 295:R2034–2040

    Article  CAS  Google Scholar 

  • Rajaratnam SM, Middleton B, Stone BM et al (2004) Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol 561:339–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Reddy AB, Field MD, Maywood ES et al (2002) Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet-lag. J Neurosci 22:7326–7330

    PubMed  CAS  Google Scholar 

  • Reid KJ, Zee PC (2009) Circadian rhythm disorders. Sem Neurol 29:393–405

    Article  Google Scholar 

  • Reid KJ, McGee-Koch LL, Zee PC (2011) Cognition in circadian rhythm sleep disorders. Progr Brain Res 190:3–20

    Article  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Progr Brain Res 181:127–151

    Article  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Ann Rev Physiol 63:647–676

    Article  CAS  Google Scholar 

  • Revell VL, Eastman CI (2005) How to trick mother nature into letting you fly around or stay up all night. J Biol Rhythm 20:353–365

    Article  Google Scholar 

  • Revell VL, Burgess HJ, Gazda CJ et al (2006) Advancing human circadian rhythms with afternoon melatonin and morning intermittent bright light. J Clin Endocrinol Metabol 91:54–59

    Article  CAS  Google Scholar 

  • Roenneberg T, Daan S, Merrow M (2003) The art of entrainment. J Biol Rhythm 18:183–194

    Article  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M et al (2012) Social jetlag and obesity. Curr Biol 22:939–943

    Article  PubMed  CAS  Google Scholar 

  • Rouch I, Wild P, Ansiau D et al (2005) Shiftwork experience, age and cognitive performance. Ergonomics 48:1282–1293

    Article  PubMed  Google Scholar 

  • Roybal K, Theobold D, Graham A et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rudic RD, McNamara P, Curtis AM et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruger M, Scheer FA (2009) Effects of circadian disruption on the cardiometabolic system. Rev Endocrine Met Dis 10:245–260

    Article  Google Scholar 

  • Rutter J, Reick M, Wu LC et al (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  PubMed  CAS  Google Scholar 

  • Sack RL (2009) The pathophysiology of jet-lag. Travel Med Infect Dis 7:102–110

    Article  PubMed  Google Scholar 

  • Sage D, Ganem J, Guillaumond F et al (2004) Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythm 19:144–156

    Article  CAS  Google Scholar 

  • Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metabol 23:1–8

    Article  CAS  Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Buijs MR et al (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154:922–931

    Article  PubMed  CAS  Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Saderi N et al (2010a) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Salgado-Delgado R, Nadia S, Ángeles-Castellanos M et al (2010b) In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythm 25:421–431

    Article  Google Scholar 

  • Scheer FA, Hilton MF, Mantzoros CS et al (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheiermann C, Kunisaki Y, Lucas D et al (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37:290–301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nature Rev Immunol 13:190–198

    Article  CAS  Google Scholar 

  • Schwartz MD, Wotus C, Liu T et al (2009) Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat. Proc Natl Acad Sci USA 106:17540–17545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartz WJ, Tavakoli-Nezhad M, Lambert CM et al (2011) Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proc Natl Acad Sci USA 108:17219–17224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Segawa K, Nakazawa S, Tsukamoto Y et al (1987) Peptic ulcer is prevalent among shift workers. Dig Dis Sci 32:449–453

    Article  PubMed  CAS  Google Scholar 

  • Sellix MT, Evans JA, Leise TL et al (2012) Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci 32:16193–16202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shostak A, Meyer-Kovac J, Oster H (2013) Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 62:2195–2203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silver AC, Arjona A, Walker WE et al (2012) The circadian clock controls Toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skene DJ, Arendt J (2007) Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med 8:651–655

    Article  PubMed  Google Scholar 

  • Smith MR, Fogg LF, Eastman CI (2009a) A compromise circadian phase position for permanent night work improves mood, fatigue, and performance. Sleep 32:1481–1489

    PubMed  PubMed Central  Google Scholar 

  • Smith MR, Fogg LF, Eastman CI (2009b) Practical interventions to promote circadian adaptation to permanent night shift work: study 4. J Biol Rhythm 24:161–172

    Article  Google Scholar 

  • Soria V, Martínez-Amoros E, Escaramis G et al (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacol 35:1279–1289

    Article  CAS  Google Scholar 

  • Spiegel K, Tasali E, Leproult R et al (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 5:253–261

    Article  PubMed  CAS  Google Scholar 

  • Stenvers DJ, Jonkers CF, Fliers E et al (2012) Nutrition and the circadian timing system. Progr Brain Res 199:359–376

    Article  CAS  Google Scholar 

  • Su TC, Lin LY, Baker D et al (2008) Elevated blood pressure, decreased heart rate variability and incomplete blood pressure recovery after a 12-hour night shift work. J Occup Health 50:380–386

    Article  PubMed  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Rev Gen 9:764–775

    Article  CAS  Google Scholar 

  • Tenkanen L, Sjoblom T, Kalimo R et al (1997) Shift work, occupation and coronary heart disease over 6 years of follow-up in the Helsinki Heart Study. Scand J Work Environ Health 23:257–265

    Article  PubMed  CAS  Google Scholar 

  • Toh KL, Jones CR, He Y et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van den Heiligenberg S, Depres-Brummer P, Barbason H et al (1999) The tumor promoting effect of constant light exposure on diethylnitrosamine-induced hepatocarcinogenesis in rats. Life Sci 64:2523–2534

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Havekes R, Barf RP et al (2008) Circadian time-place learning in mice depends on Cry genes. Curr Biol 18:844–848

    Article  PubMed  CAS  Google Scholar 

  • Vansteensel MJ, Yamazaki S, Albus H et al (2003) Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr Biol 13:1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Vgontzas AN, Chrousos GP (2002) Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol Metabol Clin North Am 31:15–36

    Article  CAS  Google Scholar 

  • Vinogradova IA, Anisimov VN, Bukalev AV et al (2010) Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats. Aging 2:82–92

    PubMed  CAS  PubMed Central  Google Scholar 

  • Viswambharan H, Carvas JM, Antic V et al (2007) Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115:2188–2195

    Article  PubMed  CAS  Google Scholar 

  • Vyas MV, Garg AX, Iansavichus AV et al (2012) Shift work and vascular events: systematic review and meta-analysis. BMJ 345:e4800

    Article  PubMed  PubMed Central  Google Scholar 

  • Waite EJ, McKenna M, Kershaw Y et al (2012) Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur J Neurosci 36:3142–3150

    Article  PubMed  Google Scholar 

  • Waterhouse J, Reilly T, Atkinson G et al (2007) Jet-lag: trends and coping strategies. Lancet 369:1117–1129

    Article  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Ann Rev Physiol 72:551–577

    Article  CAS  Google Scholar 

  • Wirth M, Burch J, Violanti J et al (2011) Shiftwork duration and the awakening cortisol response among police officers. Chronobiol Int 28:446–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittmann M, Dinich J, Merrow M et al (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    Article  PubMed  Google Scholar 

  • Wood PA, Yang X, Taber A et al (2008) Period 2 mutation accelerates ApcMin/+tumorigenesis. Mol Cancer Res 6:1786–1793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wright KP Jr, Hull JT, Hughes RJ et al (2006) Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cognit Neurosci 18:508–521

    Article  Google Scholar 

  • Wright KP, Lowry CA, Lebourgeois MK (2012) Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 5:50–62

    PubMed  PubMed Central  Google Scholar 

  • Wu M, Zeng J, Chen Y et al (2012) Experimental chronic jet-lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol Rep 64:256–262

    Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yan L (2011) Structural and functional changes in the suprachiasmatic nucleus following chronic circadian rhythm perturbation. Neuroscience 183:99–107

    Google Scholar 

  • Zawilska JB, Skene DJ, Arendt J (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61:383–410

    Article  PubMed  CAS  Google Scholar 

  • Zee PC, Goldstein CA (2010) Treatment of shift work disorder and jet-lag. Curr Treat Opt Neurol 12:396–411

    Article  Google Scholar 

  • Zeitzer JM, Dijk DJ, Kronauer R et al (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526:695–702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimberg IZ, Fernandes-Junior SA, Crispim CA et al (2012) Metabolic impact of shift work. Work 41:4376–4383

    PubMed  Google Scholar 

  • Zisapel N (2001) Circadian rhythm sleep disorders: pathophysiology and potential approaches to management. CNS Drugs 15:311–328

    Article  PubMed  CAS  Google Scholar 

  • Zober A, Schilling D, Ott MG et al (1998) Helicobacter pylori infection: prevalence and clinical relevance in a large company. J Occup Environ Med/Am College Occup Environ Med 40:586–594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Golombek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiesa, J.J., Duhart, J.M., Casiraghi, L.P., Paladino, N., Bussi, I.L., Golombek, D.A. (2015). Effects of Circadian Disruption on Physiology and Pathology: From Bench to Clinic (and Back). In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_15

Download citation

Publish with us

Policies and ethics