Skip to main content

Physiopathology of Circadian Rhythms: Understanding the Biochemical Mechanisms of Obesity and Cancer

  • Chapter
  • First Online:

Abstract

Obesity and cancer have become urgent and pressing health problems in industrialized societies. Both diseases are interrelated: overweight and obesity favor tumorogenesis in a variety of tissues and organs, mainly supported in the biochemical alterations caused by a diabetogenic state and the pro-inflammatory condition associated. An additional perspective involves disturbances in circadian rhythms which are associated with a metabolic dysfunction; circadian disruption has also been considered as a carcinogenic condition for humans based in evidence that link dysfunctional control of cell division and differentiation to an altered circadian molecular clock. In this chapter, we review recent findings that demonstrate the interplay between metabolism and circadian rhythmicity, as well as the repercussions involved in the physiopathology of obesity and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alhazzazi TY, Kamarajan P, Verdin E et al (2011) SIRT3 and cancer: Tumor promoter or suppressor? Biochem Biophys Acta 1816:80–88

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arble DM, Bass J, Laposky AD et al (2009) Circadian timing of food intake contributes to weight gain. Obesity 17(11):2100–2102

    PubMed  PubMed Central  Google Scholar 

  • Arble DM, Ramsey KM, Bass J et al (2010) Circadian disruption and metabolic disease: findings from animal models. Best Pract Res Clin Endocrinol Metab 24(5):785–800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    PubMed  CAS  Google Scholar 

  • Báez-Ruiz A, Díaz-Muñoz M (2011) Chronic inhibition of endoplasmic reticulum calcium-release channels and calcium-ATPase lengthens the period of hepatic clock gene Per1. J Circadian Rhythms 9:6

    PubMed  PubMed Central  Google Scholar 

  • Bass J (2012) Circadian topology of metabolism. Nature 491:348–356

    PubMed  CAS  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bastatas L, Martínez-Marín D, Matthews J et al (2012) AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochem Biophys Acta 1820:1111–1120

    PubMed  CAS  Google Scholar 

  • Bellet MM, Orozco-Solis R, Sahar S et al (2011) The time of metabolism: NAD+, SIRT1, and the circadian clock. Cold Spring Harb Symp Quant Biol 76:31–38

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nature 1:11–21

    CAS  Google Scholar 

  • Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1(6):a003129. doi:10.1101/cshperspect.a003129

    PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    PubMed  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    PubMed  CAS  Google Scholar 

  • Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    PubMed  CAS  Google Scholar 

  • Calle EE, Rodríguez C, Walker-Thurmond K et al (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N Engl J Med 348:1625–1638

    PubMed  Google Scholar 

  • Canaple L, Kakizawa T, Laudet V (2003) The days and nights of cancer cells. Cancer Res 63(22):7545–7552

    PubMed  CAS  Google Scholar 

  • Carmona-Alcocer V, Fuentes-Granados C, Carmona-Castro A, Aguilar-González I, Cárdenas-Vázquez R, Miranda-Anaya M (2012) Obesity alters circadian behavior and metabolism in sex dependent manner in the volcano mouse Neotomodon alstoni. Physiol Behav 105:727–733

    PubMed  CAS  Google Scholar 

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4(2):118–132

    PubMed  CAS  Google Scholar 

  • Cheng N, Chytil A, Shyr Y et al (2008) Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res 6:1521–1533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheung WW, Mao P (2012) Recent advances in obesity: genetics and beyond. ISRN Endocrinol 2012:536905. doi:10.5402/2012/536905, Epub 2012 Mar 5

    PubMed  PubMed Central  Google Scholar 

  • Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collins S, Martin TL, Surwit RS et al (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    PubMed  CAS  Google Scholar 

  • Dang CV (2012) Links between metabolism and cancer. Genes Dev 23:877–890

    Google Scholar 

  • Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562

    PubMed  CAS  Google Scholar 

  • De Jonghe BC, Hayes MR, Kanoski SE et al (2012) Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency. Am J Physiol Endocrinol Metab 303:E644–E651

    PubMed  PubMed Central  Google Scholar 

  • Delezie J, Challet E (2011) Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann N Y Acad Sci 1243:30–46

    PubMed  CAS  Google Scholar 

  • Dell’ Antone P (2012) Energy metabolism in cancer cells: How to explain the Warburg and Crabtree effects? Med Hypotheses 79:388–392

    PubMed  Google Scholar 

  • Denu JM, Gottesfeld JM (2012) Minireview series on sirtuins: from biochemistry to health and disease. J Biol Chem 287:42417–42418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    PubMed  CAS  Google Scholar 

  • Elias M (2010) Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol Membr Biol 27:479–489

    Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    PubMed  CAS  Google Scholar 

  • Faith MS, Kral TVE (2006) Social environmental and genetic influences on obesity and obesity-promoting behaviors: fostering research integration. In: Institute of Medicine (US) Committee on Assessing Interactions among Social, Behavioral, and Genetic Factors in Health; Nández LM, Blazer DG (eds). Genes, behavior, and the social environment: moving beyond the nature/nurture debate. National Academies Press, Washington, DC

    Google Scholar 

  • Filipski L, Lévi F (2009) Circadian disruption in experimental cancer processes. Integr Cancer Ther 8(4):298–302

    PubMed  CAS  Google Scholar 

  • Filipski E, King VM, Li X-M et al (2002) Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol 51:216–219

    Google Scholar 

  • Filipski E, Subramanian P, Carrière J et al (2009) Circadian disruption accelerates liver carcinogenesis in mice. Mutat Res 680:95–105

    PubMed  CAS  Google Scholar 

  • Froy O (2010) Metabolism and circadian rhythms-implications for obesity. Endocr Rev 31(1):1–24

    PubMed  CAS  Google Scholar 

  • Fu L, Pelicano H, Liu J et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    PubMed  CAS  Google Scholar 

  • Fuentes-Granados C, Duran P, Carmona-Castro A et al (2012) Obesity alters the daily sleep homeostasis and metabolism of the volcano mouse Neotomodon alstoni. Biol Rhythm Res 43(1):39–47

    Google Scholar 

  • Gachon F, Firsov D (2011) The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 7:147–158

    PubMed  Google Scholar 

  • Gale JE, Cox HI, Qian J et al (2011) Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythms 26(5):423–433

    PubMed  PubMed Central  Google Scholar 

  • Gaspers LD, Thomas AP (2005) Calcium signaling in the liver. Cell Calcium 38:329–342

    PubMed  CAS  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of the circadian entrainment. Physiol Rev 90(3):1063–1102

    PubMed  CAS  Google Scholar 

  • Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542

    PubMed  Google Scholar 

  • Green CB, Takahashi J, Bas J (2008) The meter of metabolism. Cell 134:728–742

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS et al (1999) Creation of human tumor cells with well-defined genetic elements. Nature 400:464–468

    PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Hirayama J, Cardone L, Doi M, Sassone-Corsi P (2005) Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc Natl Acad Sci USA 102(29):10194–10199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Item F, Konrad D (2012) Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev 13(Suppl 2):30–39

    PubMed  Google Scholar 

  • Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23:2803–2809

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kanasaki K, Koya D (2011) Biology of obesity: lessons from animal models of obesity. Biomed Res Inter 2011:Article ID 197636, 11 pages, doi:10.1155/2011/197636

  • Kohsaka A, Laposky AD, Ramsey KM et al (2007) High- fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    PubMed  CAS  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    PubMed  CAS  Google Scholar 

  • Korsse SE, Peppelenbosch MP, van Veelen W (2013) Targeting LKB1 signaling in cancer. Biochim Biophys Acta 1835(2):194–210

    PubMed  CAS  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437–440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laposky AD, Bradley MA, Williams DL et al (2008) Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am J Physiol Regul Integr Comp Physiol 295(6):R2059–R2066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larqué C, Velasco M, Navarro-Tableros V et al (2011) Early endocrine and molecular changes in metabolic syndrome models. IUBMB Life 63(10):831–839

    PubMed  Google Scholar 

  • Lee CC (2006) Tumor suppression by the mammalian Period genes. Cancer Causes Control 17:525–530

    PubMed  Google Scholar 

  • Li X (2013) SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai) 45(1):51–60. doi:10.1093/abbs/gms108

    Google Scholar 

  • Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    PubMed  CAS  Google Scholar 

  • Li X-M, Delaunay F, Dulong S et al (2010) Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res 70(8):3351–3360

    PubMed  CAS  Google Scholar 

  • Liu MS, Zhang JN (1985) Glycolytic and tricarboxylic acid cycle intermediates in dog livers during endotoxic shock. Biochem Med 34:335–343

    PubMed  CAS  Google Scholar 

  • Lonard DM, O’Malley BW (2012) Nuclear receptors coregulators: Modulators of pathologies and therapeutic targets. Nat Rev Endocrinol 8(10):598–604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mancheda LM, Rogers S, Best DJ (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matsunaga N, Kohno Y, Kakimoto K et al (2011) Influence of CLOCK on cytotoxicity induced by diethylnitrosamine in mouse primary hepatocytes. Toxicology 280:144–151

    PubMed  CAS  Google Scholar 

  • Matsuo T, Yamaguchi S, Mitsui S et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    PubMed  CAS  Google Scholar 

  • Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106(3):447–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Menaker M, Murphy ZC, Sellix MT (2013) Central control of peripheral circadian oscillators. Curr Opin Neurobiol 23:1–6

    Google Scholar 

  • Mendoza J, Pevet P, Challet E (2008) High-fat feeding alters the clock synchronization to light. J Physiol 586(24):5901–5910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mendoza J, Lopez-Lopez C, Revel FG et al (2011) Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice. J Neuroendocrinol 23(1):28–38

    PubMed  CAS  Google Scholar 

  • Mikhail N (2009) The metabolic syndrome: insulin resistance. Curr Hypertens Rep 11(2):156–158

    PubMed  CAS  Google Scholar 

  • Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104(9):3342–3347

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104(4):535–545

    PubMed  CAS  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mormont MC, Waterhouse J, Bleuzen P et al (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045

    PubMed  CAS  Google Scholar 

  • Munaron L, Tomatis C, Fiorio PA (2008) The secret marriage between calcium and tumor angiogenesis. Technol Cancer Res Treat 7:335–339

    PubMed  CAS  Google Scholar 

  • Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126–142

    PubMed  CAS  Google Scholar 

  • Pendergast JS, Branecky KL, Yang W et al (2013) High-fat diet acutely affects circadian organization and eating behavior. Eur J Neurosci 37:1350–1356

    PubMed  PubMed Central  Google Scholar 

  • Pezuk P, Mahawk JA, Yoshikawa T et al (2012) Circadian organization is governed by extra SCN pacemakers. J Biol Rhythms 25:432–441

    Google Scholar 

  • Rafnsson V, Tulinius H, Jónasson JG et al (2001) Risk of breast cancer in female flight attendants: a population-based study (Iceland). Cancer Causes Control 12(2):95–101

    PubMed  CAS  Google Scholar 

  • Reddy AB, O’Neill JS (2011) Metaclocks. EMBO Rep 12:612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  • Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9:886–896

    PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N (2010) Circadian clock control of the cellular response to DNA damage. FEBS Lett 584(12):2618–2625

    PubMed  CAS  PubMed Central  Google Scholar 

  • Savvidis C, Koutsilieris M (2012) Circadian rhythm disruption in cancer biology. Mol Med 18:1249–1260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scheer FA, Hilton MF, Mantzoros CS et al (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schellekens H, Finger BC, Dinan TG, Cryan JF (2012) Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 135(3):316–326

    PubMed  CAS  Google Scholar 

  • Schernhammer ES, Laden F, Speizer FE et al (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568

    PubMed  CAS  Google Scholar 

  • Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    PubMed  Google Scholar 

  • Schneeberger M, Claret M (2012) Recent insights into the role of hypothalamic AMPK signaling cascade upon metabolic control. Front Neurosci 6:185. doi:10.3389/fnins.2012.00185

    PubMed  PubMed Central  Google Scholar 

  • Schug XX, Li T (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43:198–211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sephton SE, Sapolsky RM, Kraemer HC et al (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000

    PubMed  CAS  Google Scholar 

  • Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    PubMed  CAS  Google Scholar 

  • Shin AC, Zheng H, Berthoud HR (2009) An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 97(5):572–580

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinberg GR, O’Neill HM, Dzamko NL et al (2010) Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 285(48):37198–37209

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H et al (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493

    PubMed  CAS  Google Scholar 

  • Teicher BA, Marston Linehan W et al (2012) Targeting cancer metabolism. Clin Cancer Res 18(20):5537–5545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    PubMed  CAS  Google Scholar 

  • Torra IP, Tsibulsky V, Delaunay F et al (2000) Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141:3799–3806

    PubMed  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724):1043–1045

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Physiol 72:579–603

    PubMed  CAS  Google Scholar 

  • Um JH, Pendergast JS, Springer DA et al (2011) AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6(3):e18450. doi:10.1371/journal.pone.0018450

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vazquez-Martin A, Colomer R, Brunet J et al (2008) Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 41:59–85

    PubMed  CAS  Google Scholar 

  • Veech RL (2006) The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes. Biochem Mol Biol Educ 34:168–179

    PubMed  CAS  Google Scholar 

  • Warburg OH (1930) The metabolism of tumours: investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. Arnold Constable, London

    Google Scholar 

  • Warburg O (1956a) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Warburg O (1956b) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685

    PubMed  CAS  Google Scholar 

  • Yang X (2010) A wheel of time: the circadian clock, nuclear receptors, and physiology. Genes Dev 24:741–747

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoon JA, Han DH, Noh JY et al (2012) Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice. PLoS One 7(8):e44053

    PubMed  CAS  PubMed Central  Google Scholar 

  • Youan B-B (2004) Chronopharmaceutics: gimmick or clinically relevant approach to drug delivery? J Control Release 98:337–353

    PubMed  CAS  Google Scholar 

  • Yu E, Weaver D (2011) Disrupting the circadian clock: Gene‐specific effects on aging, cancer and other phenotypes. Aging 3:479–493

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao B, Lu J, Yin J et al (2012) A functional polymorphism in PER3 gene is associated with prognosis in hepatocellular carcinoma. Liver Int 32(9):1451–1459

    PubMed  CAS  Google Scholar 

  • Zhao JJ, Roberts TM, Hahn WC (2004) Functional genetic and experimental models of human cancer. Trends Mol Med 10(7):344–350

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are in debt with Nutriologist Fernando López Barrera for design of Fig. 14.2 and Dr. Dorothy Pless for revision and enrich the English redaction. Research in M. D.-M.’s laboratory is supported by projects 129-511 (CONACyT) and 202412-23 (PAPIIT, UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Díaz-Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miranda-Anaya, M., Molina-Aguilar, C., Vázquez-Martínez, O., Díaz-Muñoz, M. (2015). Physiopathology of Circadian Rhythms: Understanding the Biochemical Mechanisms of Obesity and Cancer. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_14

Download citation

Publish with us

Policies and ethics