Skip to main content

Abstract

Sleep is a defining trait in animals. Although the function(s) of sleep remain elusive, it is clear that sleep is necessary for survival and its timing precisely regulated. Two processes operate to determine when sleep will occur and how intense it will be. The homeostatic process determines the buildup of sleep pressure that results from extended wakefulness, and the circadian process regulates sleep pressure according to a circadian clock located in the suprachiasmatic nucleus of the hypothalamus. This chapter discusses the experimental evidence for these regulatory processes. In mammals, the interplay between the homeostatic and circadian regulatory limbs not only determines the timing and intensity of sleep but also leads to a stereotypic temporal organization of sleep stages. Whereas increased homeostatic drive favors slow-wave sleep, increased circadian drive favors rapid eye movement (REM) sleep. Environmental challenges that disrupt the timing of sleep affect its amount as well as its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci 8:s683–s693

    Article  PubMed  Google Scholar 

  • Akerstedt T, Gillberg M (1981) The circadian variation of experimentally displaced sleep. Sleep 4:159–169

    PubMed  CAS  Google Scholar 

  • Albus H, Vansteensel MJ, Michel S et al (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893

    Article  PubMed  CAS  Google Scholar 

  • Andretic R, Franken P, Tafti M (2008) Genetics of sleep. Annu Rev Genet 42:361–388

    Article  PubMed  CAS  Google Scholar 

  • Archer SN, Robilliard DL, Skene DJ et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415

    PubMed  Google Scholar 

  • Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  PubMed  CAS  Google Scholar 

  • Bianchi MT, Cash SS, Mietus J et al (2010) Obstructive sleep apnea alters sleep stage transition dynamics. PLoS One 5:e11356

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7:238–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boivin DB (2000) Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 25:446–458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boivin DB, Boudreau P, James FO et al (2012) Photic resetting in night-shift work: impact on nurses’ sleep. Chronobiol Int 29:619–628

    Article  PubMed  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  • Borbely AA, Dijk DJ, Achermann P et al (2001) Processes underlying the regulation of sleep-wake cycle. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology: circadian clocks. Kluwer/Plenum, New York, pp 457–479

    Chapter  Google Scholar 

  • Borges JL (1999) Libro de los sueños. Continental Book. Denver, CO

    Google Scholar 

  • Cambras T, Weller JR, Angles-Pujoras M, Lee ML, Christopher A, Diez-Noguera A, Krueger JM, de la Iglesia HO (2007) Circadian desynchronization of core body temperature and sleep stages in the rat. Proc Natl Acad Sci U S A 104:7634–7639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campuzano A, Vilaplana J, Cambras T et al (1998) Dissociation of the rat motor activity rhythm under T cycles shorter than 24 hours. Physiol Behav 63:171–176

    Article  PubMed  CAS  Google Scholar 

  • Cirelli C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10:549–560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Czeisler CA, Dijk DJ (2001) Human circadian physiology and sleep-wake regulation. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology: circadian clocks. Kluwer/Plenum, New York, pp 531–569

    Chapter  Google Scholar 

  • Czeisler CA, Zimmerman JC, Ronda JM et al (1980a) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2:329–346

    PubMed  CAS  Google Scholar 

  • Czeisler CA, Weitzman E, Moore-Ede MC et al (1980b) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Czeisler CA, Shanahan TL, Klerman EB et al (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332:6–11

    Article  PubMed  CAS  Google Scholar 

  • Davis H, Davis PA, Loomis AL et al (1937) Changes in human brain potentials during the onset of sleep. Science 86:448–450

    Article  PubMed  CAS  Google Scholar 

  • de la Iglesia HO, Cambras T, Schwartz WJ et al (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14:796–800

    Article  PubMed  Google Scholar 

  • de Souza L, Benedito-Silva AA, Pires ML et al (2003) Further validation of actigraphy for sleep studies. Sleep 26:81–85

    PubMed  CAS  Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L et al (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Cajochen C, Tobler I, Borbely AA (1991) Sleep extension in humans – sleep stages, EEG power spectra and body-temperature. Sleep 14:294–306

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Duffy JF, Riel E et al (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516(Pt 2):611–627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eastman C, Rechtschaffen A (1983) Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination. Physiol Behav 31:417–427

    Article  PubMed  CAS  Google Scholar 

  • Easton A, Meerlo P, Bergmann B et al (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318

    PubMed  Google Scholar 

  • Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13:1065–1079

    PubMed  CAS  Google Scholar 

  • Fernandez-Duque E, de la Iglesia HO, Erkert HG (2010) Moonstruck primates: owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLoS One 5:e12572

    Article  PubMed  PubMed Central  Google Scholar 

  • Fido A, Ghali A (2008) Detrimental effects of variable work shifts on quality of sleep, general health and work performance. Med Princ Pract 17:453–457

    Article  PubMed  Google Scholar 

  • Fisher SP, Godinho SI, Pothecary CA et al (2012) Rapid assessment of sleep-wake behavior in mice. J Biol Rhythms 27:48–58

    Article  PubMed  Google Scholar 

  • Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829

    Article  PubMed  CAS  Google Scholar 

  • He Y, Jones CR, Fujiki N et al (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horne JA (1988) Why we sleep: the functions of sleep in humans and other mammals. Oxford University Press, Oxford

    Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson AL et al (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, 1st edn. American Academy of Sleep Medicine, Westchester, IL

    Google Scholar 

  • Ibuka N, Kawamura H (1975) Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96:76–81

    Article  PubMed  CAS  Google Scholar 

  • Ibuka N, Inouye SI, Kawamura H (1977) Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res 122:33–47

    Article  PubMed  CAS  Google Scholar 

  • Jones CR, Huang AL, Ptacek LJ et al (2013) Genetic basis of human circadian rhythm disorders. Exp Neurol 243:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Juda M, Vetter C, Roenneberg T (2013) Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J Biol Rhythms 28:141–151

    Article  PubMed  Google Scholar 

  • Katzenberg D, Young T, Finn L et al (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21:569–576

    PubMed  CAS  Google Scholar 

  • Kleitman N (1939) Sleep and wakefulness as alternating phases in the cycle of existence. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Kleitman N, Kleitman E (1953) Effect of non-twenty-four-hour routines of living on oral temperature and heart rate. J Appl Physiol 6:283–291

    PubMed  CAS  Google Scholar 

  • Klerman EB, Davis JB, Duffy JF et al (2004) Older people awaken more frequently but fall back asleep at the same rate as younger people. Sleep 27:793–798

    PubMed  Google Scholar 

  • Lee ML, Swanson BE, de la Iglesia HO (2009) Circadian timing of REM sleep is coupled to an oscillator within the dorsomedial suprachiasmatic nucleus. Curr Biol 19:848–852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewy AJ, Lefler BJ, Emens JS et al (2006) The circadian basis of winter depression. Proc Natl Acad Sci U S A 103:7414–7419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewy AJ, Rough JN, Songer JB et al (2007) The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci 9:291–300

    PubMed  PubMed Central  Google Scholar 

  • Lim AS, Chang AM, Shulman JM et al (2012) A common polymorphism near PER1 and the timing of human behavioral rhythms. Ann Neurol 72:324–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lockley SW, Skene DJ, Butler LJ et al (1999) Sleep and activity rhythms are related to circadian phase in the blind. Sleep 22:616–623

    PubMed  CAS  Google Scholar 

  • Lockley SW, Arendt J, Skene DJ (2007) Visual impairment and circadian rhythm disorders. Dialogues Clin Neurosci 9:301–314

    PubMed  PubMed Central  Google Scholar 

  • Lockley SW, Dijk DJ, Kosti O et al (2008) Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res 17:207–216

    Article  PubMed  Google Scholar 

  • Loomis AL, Harvey EN, Hobart G (1935) Potential rhythms of the cerebral cortex during sleep. Science 81:597–598

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCarthy MJ, Welsh DK (2012) Cellular circadian clocks in mood disorders. J Biol Rhythms 27:339–352

    Article  PubMed  CAS  Google Scholar 

  • McShane BB, Galante RJ, Biber M et al (2012) Assessing REM sleep in mice using video data. Sleep 35:433–442

    PubMed  PubMed Central  Google Scholar 

  • Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Rev 49:429–454

    Article  PubMed  Google Scholar 

  • Mistlberger RE, Bergmann BM, Waldenar W et al (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6:217–233

    PubMed  CAS  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moses JM, Hord DJ, Lubin A et al (1975) Dynamics of nap sleep during a 40 hour period. Electroencephalogr Clin Neurophysiol 39:627–633

    Article  PubMed  CAS  Google Scholar 

  • Moses J, Lubin A, Naitoh P et al (1978) Circadian variation in performance, subjective sleepiness, sleep, and oral temperature during an altered sleep-wake schedule. Biol Psychol 6:301–308

    Article  PubMed  CAS  Google Scholar 

  • Mouret J, Coindet J, Debilly G et al (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45:402–408

    Article  PubMed  CAS  Google Scholar 

  • Neubauer DN (1999) Sleep problems in the elderly. Am Fam Physician 59(2551–2558):2559–2560

    Google Scholar 

  • O’Donnell D, Silva EJ, Munch M et al (2009) Comparison of subjective and objective assessments of sleep in healthy older subjects without sleep complaints. J Sleep Res 18:254–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohta H, Yamazaki S, McMahon DG (2005) Constant light desynchronizes mammalian clock neurons. Nat Neurosci 8:267–269

    Article  PubMed  CAS  Google Scholar 

  • Rahman SA, Shapiro CM, Wang F et al (2013) Effects of filtering visual short wavelengths during nocturnal shiftwork on sleep and performance. Chronobiol Int 30:951–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Rechtschaffen A, Gilliland MA, Bergmann BM et al (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184

    Article  PubMed  CAS  Google Scholar 

  • Riemann D, Voderholzer U, Berger M (2002) Sleep and sleep-wake manipulations in bipolar depression. Neuropsychobiology 45(Suppl 1):7–12

    Article  PubMed  Google Scholar 

  • Sadeh A, Sharkey KM, Carskadon MA (1994) Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 17:201–207

    PubMed  CAS  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartz WJ, Busis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A, Mignot E (2011) Genetics of sleep and sleep disorders. Cell 146:194–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271

    Article  PubMed  CAS  Google Scholar 

  • Summers-Brenmer E (2008) Insomnia. A cultural history. Reaktion, London

    Google Scholar 

  • Toh KL, Jones CR, He Y et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Trachsel L, Edgar DM, Seidel WF et al (1992) Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res 589:253–261

    Article  PubMed  CAS  Google Scholar 

  • Wehr TA, Wirz-Justice A, Goodwin FK et al (1979) Phase advance of the circadian sleep-wake cycle as an antidepressant. Science 206:710–713

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice A (2006) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21:S11–S15

    Article  PubMed  Google Scholar 

  • Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci 20:4300–4310

    PubMed  CAS  Google Scholar 

  • Wyatt JK, Ritz-De Cecco A, Czeisler CA et al (1999) Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol 277:R1152–R1163

    PubMed  CAS  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE et al (2005) Functional consequences of a CKI delta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Toh KL, Jones CR et al (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  PubMed  CAS  Google Scholar 

  • Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391:314–318

    PubMed  CAS  Google Scholar 

  • Zverev YP, Misiri HE (2009) Perceived effects of rotating shift work on nurses’ sleep quality and duration. Malawi Med J 21:19–21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio O. de la Iglesia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Iglesia, H.O., Lee, M.L. (2015). A Time to Wake, a Time to Sleep. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_11

Download citation

Publish with us

Policies and ethics