Skip to main content

Nanothermodynamics Mediates Drug Delivery

  • Conference paper
  • First Online:
GeNeDis 2014

Abstract

The efficiency of penetration of nanodrugs through cell membranes imposes further complexity due to nanothermodynamic and entropic potentials at interfaces. Action of nanodrugs is effective after cell membrane penetration. Contrary to diffusion of water diluted common molecular drugs, nanosize imposes an increasing transport complexity at boundaries and interfaces (e.g., cell membrane). Indeed, tiny dimensional systems brought the concept of “nanothermodynamic potential,” which is proportional to the number of nanoentities in a macroscopic system, from either the presence of surface and edge effects at the boundaries of nanoentities or the restriction of the translational and rotational degrees of freedom of molecules within them. The core element of nanothermodynamic theory is based on the assumption that the contribution of a nanosize ensemble to the free energy of a macroscopic system has its origin at the excess interaction energy between the nanostructured entities. As the size of a system is increasing, the contribution of the nanothermodynamic potential to the free energy of the system becomes negligible. Furthermore, concentration gradients at boundaries, morphological distribution of nanoentities, and restriction of the translational motion from trapping sites are the source of strong entropic potentials at the interfaces. It is evident therefore that nanothermodynamic and entropic potentials either prevent or allow enhanced concentration very close to interfaces and thus strongly modulate nanoparticle penetration within the intracellular region. In this work, it is shown that nano-sized polynuclear iron (III)-hydroxide in sucrose nanoparticles have a nonuniform concentration around the cell membrane of macrophages in vivo, compared to uniform concentration at hydrophobic prototype surfaces. The difference is attributed to the presence of entropic and nanothermodynamic potentials at interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanhai WR, Sakamoto JH, Canady R et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244

    Article  CAS  PubMed  Google Scholar 

  2. Sousa AA, Kruhlak MJ (2013) Introduction: nanoimaging techniques in biology. Methods Mol Biol 950:1–10

    CAS  PubMed  Google Scholar 

  3. Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine: challenge and perspectives. Angew Chem Int Ed Engl 48(5):872–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tasciotti E, Liu X, Bhavane R et al (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    Article  CAS  PubMed  Google Scholar 

  5. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  6. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Sefah K, Liu H et al (2010) DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. P Natl Acad Sci U S A 107:5–10

    Article  CAS  Google Scholar 

  8. Dhar S, Gu FX, Langer R et al (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. P Natl Acad Sci U S A 105:17356–17361

    Article  CAS  Google Scholar 

  9. Gu F, Zhang L, Teply BA et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. P Natl Acad Sci U S A 105:2586–2591

    Article  CAS  Google Scholar 

  10. Dolmans DE, Fukumura D, Jain RK et al (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  PubMed  Google Scholar 

  11. Jang WD, Nakagishi Y, Nishiyama N et al (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113:73–79

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Kang S, Zhou R (2014) Nanomedicine: de novo design of nanodrugs (review article). Nanoscale 6:663–677

    Article  CAS  PubMed  Google Scholar 

  13. Jassby D (2011) Impact of the particle aggregation on nanoparticle reactivity, Department of Civil and Environmental Engineering. Dissertation, Duke University

    Google Scholar 

  14. Pranami G (2009) Understanding nanoparticle aggregation. Dissertation, Iowa State University, Ames, Paper 10859

    Google Scholar 

  15. Zhang XF, Xu HJ (1993) Influence of halogenation and aggregation on photosensitizing properties of zinc phthalocyanine (ZnPC). J Chem Soc Faraday Trans 89:3347–3351

    Article  CAS  Google Scholar 

  16. Siddiqui MA, Alhadlaq HA, Ahmad J et al (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PloS One 8(8):e69534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. P Natl Acad Sci U S A 109:16288–16293

    Article  CAS  Google Scholar 

  18. Mutter AC, Norman JA, Tiedemann MT et al (2014) Rational design of a zinc phthalocyanine binding protein. J Struct Biol 185:178–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kažukauskas V, Arlauskas A, Pranaitis M et al (2010) Conductivity, charge carrier mobility and ageing of ZnPc/C60 solar cells. Opt Mater 32(12):1676–1680

    Article  Google Scholar 

  20. Thiagarajan G, Greish K, Ghandehari H (2013) Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm 84(2):330–334

    Article  CAS  PubMed  Google Scholar 

  21. Magalhaes MAO, Glogauer M (2010) Pivotal advance: phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J Leukoc Biol 87(4):545–555

    Article  CAS  PubMed  Google Scholar 

  22. Yeung T, Gilbert GE, Shi J et al (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860):210–213

    Article  CAS  PubMed  Google Scholar 

  23. Trepagnier EH, Jarzynski C, Ritort F et al (2004) Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. P Natl Acad Sci U S A 101:15038–15041

    Article  CAS  Google Scholar 

  24. Carberry DM, Reid JC, Wang GM et al (2004) Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys Rev Lett 92:140601

    Article  CAS  PubMed  Google Scholar 

  25. Park BJ, Furst EM (2010) Fluid-interface templating of two-dimensional colloidal crystals. Soft Matter 6:485–488

    Article  CAS  Google Scholar 

  26. Sarantopoulou E, Kollia Z, Cefalas AC et al (2008) Surface nano/micro functionalization of PMMA thin films by 157 nm irradiation for sensing applications. Appl Surf Sci 254:1710–1719

    Article  CAS  Google Scholar 

  27. Cefalas AC, Sarantopoulou E, Kollia Z et al (2012) Entropic nanothermodynamic potential from molecular trapping within photon induced nano-voids in photon processed PDMS layers. Soft Matter 8:5561–5574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support from the European Union, under the FP7-NMP-2012-LARGE-6 “CosmoPhos-Nano” project (reference number: 310337), and from the Russian Government under the Grand No. 02.A03.21.0002 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Sarantopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stefi, A.L. et al. (2015). Nanothermodynamics Mediates Drug Delivery. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-08927-0_28

Download citation

Publish with us

Policies and ethics