Skip to main content

Monotone Operators Approached via Convex Analysis

  • Chapter
  • First Online:
Vector Optimization and Monotone Operators via Convex Duality

Part of the book series: Vector Optimization ((VECTOROPT))

  • 848 Accesses

Abstract

The monotone operators started being intensively investigated during the 1960’s by authors like Browder, Brézis or Minty, and it did not take much time until their connections with convex analysis were noticed by Rockafellar, Gossez and others. The fact that the (convex) subdifferential of a proper, convex and lower semicontinuous function is a maximally monotone operator was one of the reasons for connecting these at a first sight maybe unrelated research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliprantis, C.D., Florenzano, M., Martins-da-Rocha, V.F., Tourky, R.: Equilibrium analysis in financial markets with countably many securities. J. Math. Econ. 40, 683–699 (2004)

    Google Scholar 

  2. Alizadeh, M.H., Hadjisavvas, N.: On the Fitzpatrick transform of a monotone bifunction. Optimization 62, 693–701 (2013)

    Google Scholar 

  3. Anbo, Y.: Nonstandard arguments and the characterization of independence in generic structures. RIMS Kôkyûroku 1646, 4–17 (2009)

    Google Scholar 

  4. Attouch, H., Baillon, J.-B., Théra, M.: Variational sum of monotone operators. J. Convex Anal. 1, 1–29 (1994)

    Google Scholar 

  5. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)

    Google Scholar 

  6. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. Ser. A. 122, 301–347 (2010)

    Google Scholar 

  7. Bao, T.Q., Mordukhovich, B.S.: Extended Pareto optimality in multiobjective problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 467–515. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  8. Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. Theory Methods Appl. 66, 1198–1223 (2007)

    Google Scholar 

  9. Bauschke, H.H., Moffat, S.M., Wang, X.: Near equality, near convexity, sums of maximally monotone operators, and averages of firmly nonexpansive mappings. Math. Program. 139, 55–70 (2013)

    Google Scholar 

  10. Bauschke, H.H., Wang, X., Yao, L.: Rectangularity and paramonotonicity of maximally monotone operators. Optimization 63, 487–504 (2014)

    Google Scholar 

  11. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Google Scholar 

  12. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    Google Scholar 

  13. Boncea, H.V., Grad, S.-M.: Characterizations of ɛ-duality gap statements for composed optimization problems. Nonlinear Anal. Theory Methods Appl. 92, 96–107 (2013)

    Google Scholar 

  14. Boncea, H.V., Grad, S.-M.: Characterizations of ɛ-duality gap statements for constrained optimization problems. Cent. Eur. J. Math. 11, 2020–2033, (2013)

    Google Scholar 

  15. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15, 953–970 (2005)

    Google Scholar 

  16. Borwein, J.M.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Google Scholar 

  17. Borwein, J.M.: The geometry of Pareto efficiency over cones. Math. Operationsforsch. Stat. Ser. Optim. 11, 235–248 (1980)

    Google Scholar 

  18. Borwein, J.M.: On the existence of Pareto efficient points. Math. Oper. Res. 8, 64–73 (1983)

    Google Scholar 

  19. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    Google Scholar 

  20. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, Part I: quasi relative interiors and duality theory. Math. Program. Ser. B 57, 15–48 (1992)

    Google Scholar 

  21. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  22. Boţ, R.I., Csetnek, E.R.: Error bound results for convex inequality systems via conjugate duality. Top 20, 296–309 (2012)

    Google Scholar 

  23. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2012)

    Google Scholar 

  24. Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Google Scholar 

  25. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Google Scholar 

  26. Boţ, R.I., Dumitru, A., Wanka, G.: A new Fenchel dual problem in vector optimization. Proc. Indian Acad. Sci. Math. Sci. 119, 251–265 (2009)

    Google Scholar 

  27. Boţ, R.I., Grad, S.-M.: Regularity conditions for formulae of biconjugate functions. Taiwan. J. Math. 12, 1921–1942 (2008)

    Google Scholar 

  28. Boţ, R.I., Grad, S.-M.: Lower semicontinuous type regularity conditions for subdifferential calculus. Optim. Methods Softw. 25, 37–48 (2010)

    Google Scholar 

  29. Boţ, R.I., Grad, S.-M.: Wolfe duality and Mond-Weir duality via perturbations. Nonlinear Anal. Theory Methods Appl. 73, 374–384 (2010)

    Google Scholar 

  30. Boţ, R.I., Grad, S.-M.: Closedness type regularity conditions for surjectivity results involving the sum of two maximal monotone operators. Cent. Eur. J. Math. 9, 162–172 (2011)

    Google Scholar 

  31. Boţ, R.I., Grad, S.-M.: Duality for vector optimization problems via a general scalarization. Optimization 60, 1269–1290 (2011)

    Google Scholar 

  32. Boţ, R.I., Grad, S.-M.: Extending the classical vector Wolfe and Mond-Weir duality concepts via perturbations. J. Nonlinear Convex Anal. 12, 81–101 (2011)

    Google Scholar 

  33. Boţ, R.I., Grad, S.-M.: Approaching the maximal monotonicity of bifunctions via representative functions. J. Convex Anal. 19, 713–724 (2012)

    Google Scholar 

  34. Boţ, R.I., Grad, S.-M.: On linear vector optimization duality in infinite-dimensional spaces. Numer. Algebra Control Optim. 1, 407–415 (2011)

    Google Scholar 

  35. Boţ, R.I., Grad, S.-M., Wanka, G.: Brézis-Haraux-type approximation of the range of a monotone operator composed with a linear mapping. In: Kása, Z., Kassay, G., Kolumbán, J. (eds.) Proceedings of the International Conference in Memoriam Gyula Farkas, Cluj-Napoca, pp. 36–49. Cluj University Press, Cluj-Napoca (2006)

    Google Scholar 

  36. Boţ, R.I., Grad, S.-M., Wanka, G.: Fenchel-Lagrange duality versus geometric duality in convex optimization. J. Optim. Theory Appl. 129, 33–54 (2006)

    Google Scholar 

  37. Boţ, R.I., Grad, S.-M., Wanka, G.: A general approach for studying duality in multiobjective optimization. Math. Methods Oper. Res. 65, 417–444 (2007)

    Google Scholar 

  38. Boţ, R.I., Grad, S.-M., Wanka, G.: A new regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Applications for maximal monotone operators. In: Castellani, G. (ed.) Seminario Mario Volpato, vol. 3, pp. 16–30. Ca’Foscari University of Venice, Venice (2007)

    Google Scholar 

  39. Boţ, R.I., Grad, S.-M., Wanka, G.: Almost convex functions: conjugacy and duality. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol. 583, pp. 101–114. Springer, Berlin (2007)

    Google Scholar 

  40. Boţ, R.I., Grad, S.-M., Wanka, G.: Brézis-Haraux-type approximation in nonreflexive Banach spaces. In: Allevi, E., Bertocchi, M., Gnudi, A., Konnov, I.V. (eds.) Nonlinear Analysis with Applications in Economics, Energy and Transportation, pp. 155–170. Bergamo University Press, Bergamo (2007)

    Google Scholar 

  41. Boţ, R.I., Grad, S.-M., Wanka, G.: Fenchel’s duality theorem for nearly convex functions. J. Optim. Theory Appl. 132, 509–515 (2007)

    Google Scholar 

  42. Boţ, R.I., Grad, S.-M., Wanka, G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17, 1239–1252 (2007)

    Google Scholar 

  43. Boţ, R.I., Grad, S.-M., Wanka, G.: New constraint qualification and conjugate duality for composed convex optimization problems. J. Optim. Theory Appl. 135, 241–255 (2007)

    Google Scholar 

  44. Boţ, R.I., Grad, S.-M., Wanka, G.: Weaker constraint qualifications in maximal monotonicity. Numer. Funct. Anal. Optim. 28, 27–41 (2007)

    Google Scholar 

  45. Boţ, R.I., Grad, S.-M., Wanka, G.: A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math. Nachr. 281, 1088–1107 (2008)

    Google Scholar 

  46. Boţ, R.I., Grad, S.-M., Wanka, G.: New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal. Theory Methods Appl. 69, 323–336 (2008)

    Google Scholar 

  47. Boţ, R.I., Grad, S.-M., Wanka, G.: On strong and total Lagrange duality for convex optimization problems. J. Math. Anal. Appl. 337, 1315–1325 (2008)

    Google Scholar 

  48. Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  49. Boţ, R.I., Grad, S.-M., Wanka, G.: Generalized Moreau-Rockafellar results for composed convex functions. Optimization 58, 917–933 (2009)

    Google Scholar 

  50. Boţ, R.I., Grad, S.-M., Wanka, G.: New regularity conditions for Lagrange and Fenchel-Lagrange duality in infinite dimensional spaces. Math. Inequal. Appl. 12, 171–189 (2009)

    Google Scholar 

  51. Boţ, R.I., Grad, S.-M., Wanka, G.: Classical linear vector optimization duality revisited. Optim. Lett. 6, 199–210 (2012)

    Google Scholar 

  52. Boţ, R.I., Kassay, G., Wanka, G.: Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 127, 45–70 (2005)

    Google Scholar 

  53. Boţ, R.I., Kassay, G., Wanka, G.: Duality for almost convex optimization problems via the perturbation approach. J. Glob. Optim. 42, 385–399 (2009)

    Google Scholar 

  54. Boţ, R.I., Wanka, G.: An analysis of some dual problems in multiobjective optimization (I). Optimization 53, 281–300 (2004)

    Google Scholar 

  55. Boţ, R.I., Wanka, G.: An analysis of some dual problems in multiobjective optimization (II). Optimization 53, 301–324 (2004)

    Google Scholar 

  56. Boţ, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal. Theory Methods Appl. 64, 2787–2804 (2006)

    Google Scholar 

  57. Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. Theory Methods Appl. 64, 1367–1381 (2006)

    Google Scholar 

  58. Breckner, W., Kolumbán, J.: Dualität bei Optimierungsaugaben in Topologischen Vektorräumen. Mathematica 10, 229–244 (1968)

    Google Scholar 

  59. Breckner, W., Kolumbán, J.: Konvexe Optimierungsaufgaben in Topologischen Vektorräumen. Math. Scand. 25, 227–247 (1969)

    Google Scholar 

  60. Brézis, H., Haraux, A.: Image d’une somme d’opérateurs monotones et applications. Isr. J. Math. 23, 165–186 (1976)

    Google Scholar 

  61. Brumelle, S.: Duality for multiple objective convex programs. Math. Oper. Res. 6, 159–172 (1981)

    Google Scholar 

  62. Bueno, O., Martínez-Legaz, J.-E., Svaiter, B.F.: On the monotone polar and representable closures of monotone operators. J. Convex Anal. 21, 495–505 (2014)

    Google Scholar 

  63. Burachik, R.S., Jeyakumar, V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12, 279–290 (2005)

    Google Scholar 

  64. Burachik, R.S., Jeyakumar, V., Wu, Z.-Y.: Necessary and sufficient conditions for stable conjugate duality. Nonlinear Anal. Theory Methods Appl. 64, 1998–2006 (2006)

    Google Scholar 

  65. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002)

    Google Scholar 

  66. Cambini, R., Carosi, L.: Duality in multiobjective optimization problems with set constraints. In: Eberhard, A., Hadjisavvas, N., Luc, D.T. (eds.) Generalized Convexity, Generalized Monotonicity and Applications, Proceedings of the 7th International Symposium on Generalized Convexity and Generalized Monotonicity held in Hanoi, 27–31 Aug 2002. Nonconvex Optimization and Its Applications, vol. 77, pp. 131–146. Springer, New York (2005)

    Google Scholar 

  67. Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theory Appl. 125, 223–229 (2005)

    Google Scholar 

  68. Cammaroto, F., Di Bella, B.: On a separation theorem involving the quasi-relative interior. Proc. Edinb. Math. Soc. II. Ser. 50, 605–610 (2007)

    Google Scholar 

  69. Carrizosa, E., Fliege, J.: Generalized goal programming: polynomial methods and applications. Math. Program. 93, 281–303 (2002)

    Google Scholar 

  70. Chbani, Z., Riahi, H.: The range of sums of monotone operators and applications to Hammerstein inclusions and nonlinear complementarity problems. In: Benkirane, A., Grossez, P. (eds.) Nonlinear Partial Differential Equations, Fés, 1994. Pitman Research Notes in Mathematics Series, vol. 343, pp. 61–72. Longman, Harlow (1996)

    Google Scholar 

  71. Chien, T.Q.: Nondifferentiable and quasidifferentiable duality in vector optimization theory. Kybernetika 21, 298–312 (1985)

    Google Scholar 

  72. Chu, L.-J.: On Brézis-Haraux approximation with applications. Far East J. Math. Sci. 4, 425–442 (1996)

    Google Scholar 

  73. Chu, L.-J.: On the sum of monotone operators. Mich. Math. J. 43, 273–289 (1996)

    Google Scholar 

  74. Coulibaly, A., Crouzeix, J.-P.: Condition numbers and error bounds in convex programming. Math. Program. Ser. B 116, 79–113 (2009)

    Google Scholar 

  75. Crouzeix, J.-P., Ocaña Anaya, E.: Maximality is nothing but continuity. J. Convex Anal. 17, 521–534 (2010)

    Google Scholar 

  76. Daniele, P., Giuffré, S.: General infinite dimensional duality theory and applications to evolutionary network equilibrium problems. Optim. Lett. 1, 227–243 (2007)

    Google Scholar 

  77. Daniele, P., Giuffré, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339, 221–239 (2007)

    Google Scholar 

  78. Dauer, J.P., Saleh, O.A.: A characterization of proper minimal points as solutions of sublinear optimization problems. J. Math. Anal. Appl. 178, 227–246 (1993)

    Google Scholar 

  79. Debreu, G.: Theory of Value. Wiley, New York (1959)

    Google Scholar 

  80. Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for ɛ-Pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)

    Google Scholar 

  81. Durea, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)

    Google Scholar 

  82. Egudo, R.R.: Proper efficiency and multiobjective duality in nonlinear programming. J. Inf. Optim. Sci. 8, 155–166 (1987)

    Google Scholar 

  83. Egudo, R.R.: Efficiency and generalized convex duality for multiobjective programs. J. Math. Anal. Appl. 138, 84–94 (1989)

    Google Scholar 

  84. Egudo, R.R., Weir, T., Mond, B.: Duality without constraint qualification for multiobjective programming. J. Aust. Math. Soc. Ser. B 33, 531–544 (1992)

    Google Scholar 

  85. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)

    Google Scholar 

  86. Fitzpatrick, S.P.: Representing monotone operators by convex functions. In: Fitzpatrick, S.P., Giles, J.R. (eds.) Workshop/Miniconference on Functional Analysis and Optimization. Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra (1988)

    Google Scholar 

  87. Fliege, J.: Approximation Techniques for the Set of Efficient Points. Habilitation Thesis, Faculty of Mathematics, University of Dortmund (2001)

    Google Scholar 

  88. Fliege, J., Heseler, A.: Constructing approximations to the efficient set of convex quadratic multiobjective problems. Reports on applied mathematics, 211, Faculty of Mathematics, University of Dortmund (2002)

    Google Scholar 

  89. Flores-Bazán, F., Flores-Bazán, F., Laengle, S.: Characterizing efficiency on infinite-dimensional commodity spaces with ordering cones having possibly empty interior. J. Optim. Theory Appl. (2014). doi:10.1007/s10957-014-0558-y

    Google Scholar 

  90. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 29–59. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  91. Flores-Bazán, F., Hadjisavvas, N., Vera, C.: An optimal alternative theorem and applications. J. Glob. Optim. 37, 229–243 (2007)

    Google Scholar 

  92. Flores-Bazán, F., Hernández, E.: A unified vector optimization problem: complete scalarizations and applications. Optimization 60, 1399–1419 (2011)

    Google Scholar 

  93. Flores-Bazán, F., Hernández, E.: Optimality conditions for a unified vector optimization problem with not necessarily preordering relations. J. Glob. Optim. 56, 299–315 (2013)

    Google Scholar 

  94. Focke, J: Vektormaximumproblem und parametrische Optimierung. Math. Operationsforsch. Stat. 4, 365–369 (1973)

    Google Scholar 

  95. Friedman, H.M.: A way out. In: Link, G. (ed.) One Hundred Years of Russell’s Paradox, pp. 49–86. de Gruyter, Berlin/New York (2004)

    Google Scholar 

  96. Gale, D., Kuhn, H.W., Tucker, A.W.: Linear programming and the theory of games. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 317–329. Wiley, New York (1951)

    Google Scholar 

  97. Gerstewitz, C.: Nichtkonvexe Dualität in der Vektoroptimierung. Wiss. Z. Tech. Hochsch. Carl Schorlemmer Leuna-Merseburg 25, 357–364 (1983)

    Google Scholar 

  98. Gerstewitz, C., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau 31, 61–81 (1985)

    Google Scholar 

  99. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Google Scholar 

  100. Gong, X.-H.: Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. J. Math. Anal. Appl. 307, 12–31 (2005)

    Google Scholar 

  101. Göpfert, A.: Multicriterial duality, examples and advances. In: Fandel, G., Grauer, M., Kurzhanski, A., Wierzbicki, A.P. (eds.) Large-Scale Modelling and Interactive Decision Analysis, Proceedings of the International Workshop Held in Eisenach, 18–21 Nov 1985. Lecture Notes in Economics and Mathematical Systems, vol. 273, pp. 52–58. Springer, Berlin (1986)

    Google Scholar 

  102. Göpfert, A., Gerth, C.: Über die Skalarisierung und Dualisierung von Vektoroptimierungsproblemen. Z. Anal. Anwend. 5, 377–384 (1986)

    Google Scholar 

  103. Göpfert, A., Nehse, R.: Vektoroptimierung: Theorie, Verfahren und Anwendungen. Teubner, Leipzig (1990)

    Google Scholar 

  104. Gossez, J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–395 (1971)

    Google Scholar 

  105. Grad, A.: Generalized Duality and Optimality Conditions. Editura Mega, Cluj-Napoca (2010)

    Google Scholar 

  106. Grad, A.: Quasi interior-type optimality conditions in set-valued duality. J. Nonlinear Convex Anal. 14, 301–317 (2013)

    Google Scholar 

  107. Grad, S.-M.: Recent Advances in Vector Optimization and Set-Valued Analysis via Convex Duality. Habilitation Thesis, Faculty of Mathematics, Chemnitz University of Technology (2014)

    Google Scholar 

  108. Grad, S.-M., Pop, E.L.: Alternative generalized Wolfe type and Mond-Weir type vector duality. J. Nonlinear Convex Anal. 15, 867–884 (2014)

    Google Scholar 

  109. Grad, S.-M., Pop, E.L.: Characterizing relatively minimal elements via linear scalarization. In: Huisman, D., Louwerse, I., Wagelmans, A.P.M. (eds.) Operations Research Proceedings 2013. Springer, Berlin/Heidelberg, 153–159 (2014)

    Google Scholar 

  110. Grad, S.-M., Pop, E.L.: Vector duality for convex vector optimization problems by means of the quasi interior of the ordering cone. Optimization 63, 21–37 (2014)

    Google Scholar 

  111. Graña Drummond, L.M., Iusem, A.N.: First order conditions for ideal minimization of matrix-valued problems. J. Convex Anal. 10, 1–19 (2003)

    Google Scholar 

  112. Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: On first order optimality conditions for vector optimization. Acta Math. Appl. Sin. Engl. Ser. 19, 371–386 (2003)

    Google Scholar 

  113. Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994)

    Google Scholar 

  114. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate solutions in vector optimization problems via scalarization. Comput. Optim. Appl. 35, 305–324 (2006)

    Google Scholar 

  115. Ha, T.X.D.: Optimality conditions for various efficient solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems. Nonlinear Anal. Theory Methods Appl. 75, 1305–1323 (2012)

    Google Scholar 

  116. Hadjisavvas, N., Khatibzadeh, H.: Maximal monotonicity of bifunctions. Optimization 59, 147–160 (2010)

    Google Scholar 

  117. Hamel, A.H., Heyde, F., Löhne, A., Tammer, C., Winkler, K.: Closing the duality gap in linear vector optimization. J. Convex Anal. 11, 163–178 (2004)

    Google Scholar 

  118. Hartley, R.: On cone-efficiency, cone-convexity and cone-compactness. SIAM J. Appl. Math. 34, 211–222 (1978)

    Google Scholar 

  119. Helbig, S.: Parametric optimization with a bottleneck objective and vector optimization. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization, pp. 146–159. Springer, Berlin (1987)

    Google Scholar 

  120. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Google Scholar 

  121. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19, 836–845 (2008)

    Google Scholar 

  122. Heyde, F., Löhne, A., Tammer, C.: Set-valued duality theory for multiple objective linear programs and application to mathematical finance. Math. Methods Oper. Res. 69, 159–179 (2009)

    Google Scholar 

  123. Heyde, F., Löhne, A., Tammer, C.: The attainment of the solution of the dual program in vertices for vectorial linear programs. In: Barichard, V., Ehrgott, M., Gandibleux, X., T’kindt, M.V. (eds.) Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 618, pp. 13–24. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  124. Hiriart-Urruty, J.-B.: New concepts in nondifferentiable programming. Bull. Soc. Math. Fr. Suppl. Mém. 60, 57–85 (1979)

    Google Scholar 

  125. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Google Scholar 

  126. Hiriart-Urruty, J.-B.: ɛ-subdifferential calculus. In: Aubin, J.-P., Vinter, R.B. (eds.) Convex Analysis and Optimization. Pitman Research Notes in Mathematics Series, vol. 57, pp. 43–92. Pitman, Boston (1982)

    Google Scholar 

  127. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I: Fundamentals. Grundlehren der Mathematischen Wissenschaften, vol. 305. Springer, Berlin (1993)

    Google Scholar 

  128. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Grundlehren der Mathematischen Wissenschaften, vol. 306. Springer, Berlin (1993)

    Google Scholar 

  129. Huong, N.T.T., Yen, N.D.: The Pascoletti-Serafini scalarization scheme and linear vector optimization. J. Optim. Theory Appl. 162, 559–576 (2014)

    Google Scholar 

  130. Hurwicz, L: Programming in linear spaces. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Non-Linear Programming, pp. 38–102. Stanford University Press, Stanford (1958)

    Google Scholar 

  131. Isermann, H.: Proper efficiency and the linear vector maximum problem. Oper. Res. 22, 189–191 (1974)

    Google Scholar 

  132. Isermann, H.: Duality in multiple objective linear programming. In: Zionts, S. (ed.) Multiple Criteria Problem Solving. Lecture Notes in Economics and Mathematical Systems, vol. 155, pp. 274–285. Springer, Berlin (1978)

    Google Scholar 

  133. Isermann, H.: On some relations between a dual pair of multiple objective linear programs. Z. Oper. Res. Ser. A 22, A33–A41 (1978)

    Google Scholar 

  134. Islam, M.A.: Sufficiency and duality in nondifferentiable multiobjective programming. Pure Appl. Math. Sci. 39, 31–39 (1994)

    Google Scholar 

  135. Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18, 489–503 (2011)

    Google Scholar 

  136. Iusem, A.N., Svaiter, B.F.: On diagonal subdifferential operators in nonreflexive Banach spaces. Set-Valued Var. Anal. 20, 1–14 (2012)

    Google Scholar 

  137. Iwanow, E.H., Nehse, R.: Some results on dual vector optimization problems. Optimization 16, 505–517 (1985)

    Google Scholar 

  138. Jahn, J.: Duality in vector optimization. Math. Program. 25, 343–353 (1983)

    Google Scholar 

  139. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    Google Scholar 

  140. Jahn, J.: Vector Optimization – Theory, Applications, and Extensions. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  141. Jeyakumar, V., Li, G.Y.: New dual constraint qualifications characterizing zero duality gaps of convex programs and semidefinite programs. Nonlinear Anal. Theory Methods Appl. 71, 2239–2249 (2009)

    Google Scholar 

  142. Jeyakumar, V., Li, G.Y.: Stable zero duality gaps in convex programming: complete dual characterizations with applications to semidefinite programs. J. Math. Anal. Appl. 360, 156–167 (2009)

    Google Scholar 

  143. Kaliszewski, I.: Norm scalarization and proper efficiency in vector optimization. Found. Control Eng. 11, 117–131 (1986)

    Google Scholar 

  144. Kaliszewski, I.: Generating nested subsets of efficient solutions. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization, pp. 173–182. Springer, Berlin (1987)

    Google Scholar 

  145. Kanniappan, P.: Duality theorems for convex programming without constraint qualification. J. Aust. Math. Soc. Ser. A 36, 252–266 (1984)

    Google Scholar 

  146. Khanh, P.Q.: Optimality conditions via norm scalarization in vector optimization. SIAM J. Control Optim. 31, 646–658 (1993)

    Google Scholar 

  147. Kim, G.S., Lee, G.M.: On ɛ-approximate solutions for convex semidefinite optimization problems. Taiwan. J. Math. 11, 765–784 (2007)

    Google Scholar 

  148. Klee, V.L.: Convex sets in linear spaces. Duke Univ. Math. Ser. 16, 443–466 (1948)

    Google Scholar 

  149. Kolumbán, J.: Dualität bei Optimierungsaufgaben. In: Alexits, G., Stechkin, S.B. (eds.) Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory), Budapest, 1969, pp. 261–265. Akadémiai Kiadó, Budapest (1972)

    Google Scholar 

  150. Kornbluth, J.S.H.: Duality, indifference and sensitivity analysis in multiple objective linear programming. Oper. Res. Q. 25, 599–614 (1974)

    Google Scholar 

  151. Kusraev, A.G., Kutateladze, S.S.: Subdifferentials: Theory and Applications. Mathematics and Its Applications, vol. 323. Kluwer, Dordrecht (1995)

    Google Scholar 

  152. Kuwano, I., Tanaka, T., Yamada, S.: Several nonlinear scalarization methods for set-valued maps. RIMS Kôkyûroku 1643, 75–86 (2009)

    Google Scholar 

  153. Lampe, U.: Dualität und eigentliche Effizienz in der Vektoroptimierung. Humboldt-Univ. Berl., Fachbereich Math., Semin.ber. 37, 45–54 (1981)

    Google Scholar 

  154. Liu, J., Song, W.: On proper efficiencies in locally convex spaces – a survey. Acta Math. Vietnam. 26, 301–312 (2001)

    Google Scholar 

  155. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin/Heidelberg (1989)

    Google Scholar 

  156. Luc, D.T.: On duality in multiple objective linear programming. Eur. J. Oper. Res. 210, 158–168 (2011)

    Google Scholar 

  157. Luc, D.T., Phong, T.Q., Volle, M.: A new duality approach to solving concave vector maximization problems. J. Glob. Optim. 36, 401–423 (2006)

    Google Scholar 

  158. Lowe, T.J., Thisse, J.-F., Ward, J.E., Wendell, R.E.: On efficient solutions to multiple objective mathematical problems. Manag. Sci. 30, 13–46 (1984)

    Google Scholar 

  159. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)

    Google Scholar 

  160. Mansour, M.A., Chbani, Z., Riahi, H.: Recession bifunction and solvability of noncoercive equilibrium problems. Commun. Appl. Anal. 7, 369–377 (2003)

    Google Scholar 

  161. Marques Alves, M., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product in non-reflexive Banach spaces. J. Convex Anal. 17, 553–563 (2010)

    Google Scholar 

  162. Marques Alves, M., Svaiter, B.F.: On the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces. J. Convex Anal. 18, 209–226 (2011)

    Google Scholar 

  163. Martínez-Legaz, J.-E.: Some generalizations of Rockafellar’s surjectivity theorem. Pac. J. Optim. 4, 527–535 (2008)

    Google Scholar 

  164. Mbunga, P.: Structural stability of vector optimization problems. In: Pardalos, P.M., Tseveendorj, I., Enkhbat, R. (eds.) Optimization and Optimal Control, Ulaanbaatar, 2002. Series on Computers and Operations Research, vol. 1, pp. 175–183. World Scientific, River Edge (2003)

    Google Scholar 

  165. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectr. 24, 193–213 (2002)

    Google Scholar 

  166. Miglierina, E., Molho, E.: Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114, 657–670 (2002)

    Google Scholar 

  167. Miglierina, E., Molho, E., Rocca, M.: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126, 391–409 (2004)

    Google Scholar 

  168. Mitani, K., Nakayama, H.: A multiobjective diet planning support system using the satisficing trade-off method. J. Multi-Criteria Decis. Anal. 6, 131–139 (1997)

    Google Scholar 

  169. Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Zemba, W.T. (eds.) Generalized Concavity in Optimization and Economics. Proceedings of the NATO Advanced Study Institute, University of British Columbia, Vancouver, 1980, pp. 263–279. Academic, New York (1981)

    Google Scholar 

  170. Nakayama, H.: Some remarks on dualization in vector optimization. J. Multi-Criteria Decis. Anal. 5, 218–255 (1996)

    Google Scholar 

  171. Pennanen, T.: On the range of monotone composite mappings. J. Nonlinear Convex Anal. 2, 193–202 (2001)

    Google Scholar 

  172. Penot, J.-P., Zălinescu, C.: Some problems about the representation of monotone operators by convex functions. ANZIAM J. 47, 1–20 (2005)

    Google Scholar 

  173. Phelps, R.R.: Lectures on maximal monotone operators. Extr. Math. 12, 193–230 (1997)

    Google Scholar 

  174. Precupanu, T.: Closedness conditions for the optimality of a family of nonconvex optimization problems. Math. Operationsforsch. Stat. Ser. Optim. 15, 339–346 (1984)

    Google Scholar 

  175. Qiu, J.H., Hao, Y.: Scalarization of Henig properly efficient points in locally convex spaces. J. Optim. Theory Appl. 147, 71–92 (2010)

    Google Scholar 

  176. Riahi, H.: On the range of the sum of monotone operators in general Banach spaces. Proc. Am. Math. Soc. 124, 3333–3338 (1996)

    Google Scholar 

  177. Rocco, M., Martínez-Legaz, J.-E.: On surjectivity results for maximal monotone operators of type (D). J. Convex Anal. 18, 545–576 (2011)

    Google Scholar 

  178. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  179. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Google Scholar 

  180. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Google Scholar 

  181. Rödder, W.: A generalized saddlepoint theory; its application to duality theory for linear vector optimum problems. Eur. J. Oper. Res. 1, 55–59 (1977)

    Google Scholar 

  182. Rubinov, A.M.: Sublinear operator and theirs applications. Russ. Math. Surv. 32, 113–175 (1977)

    Google Scholar 

  183. Rubinov, A.M., Gasimov, R.N.: Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J. Glob. Optim. 29, 455–477 (2004)

    Google Scholar 

  184. Rubinov, A.M., Glover, B.M.: Quasiconvexity via two step functions. In: Crouzeix, J.-P., Martínez Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results. Nonconvex Optimization and Its Applications, vol. 27, pp. 159–183. Kluwer, Dordrecht (1998)

    Google Scholar 

  185. Schandl, B., Klamroth, K., Wiecek, M.M.: Norm-based approximation in multicriteria programming. Comput. Math. Appl. 44, 925–942 (2002)

    Google Scholar 

  186. Schechter, M.: A subgradient duality theorem. J. Math. Anal. Appl. 61, 850–855 (1977)

    Google Scholar 

  187. Schönefeld, P.: Some duality theorems for the non-linear vector maximum problem. Unternehmensforsch. 14, 51–63 (1970)

    Google Scholar 

  188. Shimizu, A., Nishizawa, S., Tanaka, T.: On nonlinear scalarization methods in set-valued optimization. RIMS Kôkyûroku 1415, 20–28 (2005)

    Google Scholar 

  189. Simons, S.: The range of a monotone operator. J. Math. Anal. Appl. 199, 176–201 (1996)

    Google Scholar 

  190. Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin (2008)

    Google Scholar 

  191. Tammer, C.: A variational principle and applications for vectorial control approximation problems. Preprint 96–09, Reports on Optimization and Stochastics, Martin-Luther University Halle-Wittenberg (1996)

    Google Scholar 

  192. Tammer, C., Göpfert, A.: Theory of vector optimization. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art – Annotated Bibliographic Surveys. International Series in Operations Research & Management Science, vol. 52, pp. 1–70. Kluwer, Boston (2002)

    Google Scholar 

  193. Tammer, C., Göpfert, A., Riahi, H., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 17. Springer, New York (2003)

    Google Scholar 

  194. Tammer, C., Winkler, K.: A new scalarization approach and applications in multicriteria d.c. optimization. J. Nonlinear Convex Anal. 4, 365–380 (2003)

    Google Scholar 

  195. Tanaka, T., Kuroiwa, D.: Some general conditions assuring int A + B = int (A + B). Appl. Math. Lett. 6, 51–53 (1993)

    Google Scholar 

  196. Tanaka, T., Kuroiwa, D.: The convexity of A and B assures int A + B = int (A + B). Appl. Math. Lett. 6, 83–86 (1993)

    Google Scholar 

  197. Tanino, T., Kuk, H.: Nonlinear multiobjective programming. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art – Annotated Bibliographic Surveys. International Series in Operations Research & Management Science, vol. 52, pp. 71–128. Kluwer, Boston (2002)

    Google Scholar 

  198. Tasset, T.N.: Lagrange Multipliers for Set-Valued Functions When Ordering Cones Have Empty Interior. PhD Thesis, University of Colorado (2010)

    Google Scholar 

  199. Tidball, M.M., Pourtallier, O., Altman, E.: Approximations in dynamic zero-sum games. SIAM J. Optim. 35, 2101–2117 (2006)

    Google Scholar 

  200. Wanka, G., Boţ, R.I.: A new duality approach for multiobjective convex optimization problems. J. Nonlinear Convex Anal. 3, 41–57 (2002)

    Google Scholar 

  201. Wanka, G., Boţ, R.I., Grad, S.-M.: Multiobjective duality for convex semidefinite programming problems. Z. Anal. Anwend. 22, 711–728 (2003)

    Google Scholar 

  202. Wanka, G., Boţ, R.I., Vargyas, E.T.: Duality for location problems with unbounded unit balls. Eur. J. Oper. Res. 179, 1252–1265 (2007)

    Google Scholar 

  203. Weidner, P.: An approach to different scalarizations in vector optimization. Wiss. Z. Tech. Hochsch. Ilmenau 36, 103–110 (1990)

    Google Scholar 

  204. Weidner, P.: The influence of proper efficiency on optimal solutions of scalarizing problems in multicriteria optimization. OR Spektrum 16, 255–260 (1994)

    Google Scholar 

  205. Weir, T.: Proper efficiency and duality for vector valued optimization problems. J. Aust. Math. Soc. Ser. A 43, 21–34 (1987)

    Google Scholar 

  206. Weir, T.: A note on invex functions and duality in multiple objective optimization. Opsearch 25, 98–104 (1988)

    Google Scholar 

  207. Weir, T.: On efficiency, proper efficiency and duality in multiobjective programming. Asia-Pac. J. Oper. Res. 7, 46–54 (1990)

    Google Scholar 

  208. Weir, T., Mond, B.: Duality for generalized convex programming without a constraint qualification. Util. Math. 31, 233–242 (1987)

    Google Scholar 

  209. Weir, T., Mond, B.: Generalised convexity and duality in multiple objective programming. Bull. Aust. Math. Soc. 39, 287–299 (1989)

    Google Scholar 

  210. Weir, T., Mond, B.: Multiple objective programming duality without a constraint qualification. Util. Math. 39, 41–55 (1991)

    Google Scholar 

  211. Weir, T., Mond, B., Craven, B.D.: On duality for weakly minimized vector valued optimization problems. Optimization 17, 711–721 (1986)

    Google Scholar 

  212. Weir, T., Mond, B., Craven, B.D.: Weak minimization and duality. Numer. Funct. Anal. Optim. 9, 181–192 (1987)

    Google Scholar 

  213. Wierzbicki, A.P.: Basic properties of scalarizing functionals for multiobjective optimization. Math. Operationsforsch. Stat. Ser. Optim. 8, 55–60 (1977)

    Google Scholar 

  214. Winkler, K.: Skalarisierung mehrkriterieller Optimierungsprobleme mittels schiefer Normen. In: Habenicht, W., Scheubrein, B., Scheubein, R. (eds.) Multi-Criteria- und Fuzzy-Systeme in Theorie und Praxis, pp. 173–190. Deutscher Universitäts-Verlag, Wiesbaden (2003)

    Google Scholar 

  215. Wolfe, P.: A duality theorem for non-linear programming. Q. Appl. Math. 19, 239–244 (1961)

    Google Scholar 

  216. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Google Scholar 

  217. Zeidler, E.: Nonlinear Functional Analysis and Applications II-B: Nonlinear Monotone Operators. Springer, New York (1990)

    Google Scholar 

  218. Zheng, X.Y.: Scalarization of Henig proper efficient points in a normed space. J. Optim. Theory Appl. 105, 233–247 (2000)

    Google Scholar 

  219. Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)

    Google Scholar 

  220. Zălinescu, C.: Stability for a class of nonlinear optimization problems and applications. In: Clarke, F.H., Demyanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, Erice 1988, pp. 437–458. Plenum, New York (1988)

    Google Scholar 

  221. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Google Scholar 

  222. Zălinescu, C.: A new convexity property for monotone operators. J. Convex Anal. 13, 883–887 (2006)

    Google Scholar 

  223. Zălinescu, C.: On three open problems related to quasi relative interior J. Convex Anal. 22 (2015, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grad, SM. (2015). Monotone Operators Approached via Convex Analysis. In: Vector Optimization and Monotone Operators via Convex Duality. Vector Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-08900-3_7

Download citation

Publish with us

Policies and ethics