Skip to main content

Role of Astrocytes in Delayed Neuronal Death: GLT-1 and its Novel Regulation by MicroRNAs

  • Chapter
  • First Online:
Book cover Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

Astrocytes have been shown to protect neurons from delayed neuronal death and increase their survival in cerebral ischemia. One of the main mechanisms of astrocyte protection is rapid removal of excess glutamate from synaptic sites by astrocytic plasma membrane glutamate transporters such as GLT-1/EAAT-2, reducing excitotoxicity. Astrocytic mitochondrial function is essential for normal GLT-1 function. Manipulating astrocytic mitochondrial and GLT-1 function is thus an important strategy to enhance neuronal survival and improve outcome following cerebral ischemia. Increasing evidence supports the involvement of microRNAs (miRNA), some of them being astrocyte-enriched, in the regulation of cerebral ischemia. This chapter will first update the information about astrocytes, GLT-1, astrocytic mitochondria, and delayed neuronal death. Then we will focus on two recently reported astrocyte-enriched miRNAs (miR-181 and miR-29 families), their effects on astrocytic mitochondria and GLT-1 as well as on outcome after cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bambrick L, Kristian T, Fiskum G (2004) Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res 29:601–608

    Article  PubMed  CAS  Google Scholar 

  • Bambrick LL, Chandrasekaran K, Mehrabian Z, Wright C, Krueger BK, Fiskum G (2006) Cyclosporin A increases mitochondrial calcium uptake capacity in cortical astrocytes but not cerebellar granule neurons. J Bioenerg Biomembr 38:43–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11:164–173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  PubMed  CAS  Google Scholar 

  • Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  • Blakeley JO, Llinas RH (2007) Thrombolytic therapy for acute ischemic stroke. J Neurol Sci 261:55–62

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko A, Chesler M (2001) Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:134–142

    Article  PubMed  CAS  Google Scholar 

  • Bonner HP, Concannon CG, Bonner C, Woods I, Ward MW, Prehn JH (2010) Differential expression patterns of Puma and Hsp70 following proteasomal stress in the hippocampus are key determinants of neuronal vulnerability. J Neurochem 114:606–616

    Article  PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    Article  PubMed  Google Scholar 

  • Chan PH (2005) Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann N Y Acad Sci 1042:203–209

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ (2013) An unsolved mystery: the target-recognizing RNA species of microRNA genes. Biochimie 95:1663–1676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P, Hu W (2010) MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep 23:997–1003

    PubMed  CAS  Google Scholar 

  • Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6:667–672

    Article  PubMed  CAS  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    PubMed  Google Scholar 

  • Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci U S A 97:5723–5728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fragoso R, Mao T, Wang S, Schaffert S, Gong X, Yue S, Luong R, Min H, Yashiro-Ohtani Y, Davis M, Pear W, Chen CZ (2012) Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet 8:e1002855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukamachi S, Furuta A, Ikeda T, Ikenoue T, Kaneoka T, Rothstein JD, Iwaki T (2001) Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Brain Res Dev Brain Res 132:131–139

    Article  PubMed  CAS  Google Scholar 

  • Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10:400–405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giffard RG, Monyer H, Choi DW (1990) Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res 530:138–141

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524

    PubMed  CAS  Google Scholar 

  • Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris ME, Wang Y, Pedigo NW, Hensley K, Butterfield DA, Carney JM (1996) Amyloid β peptide (25–35) inhibits Na + -dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 67:277–286

    Article  PubMed  CAS  Google Scholar 

  • Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, Shen H, Gerhardt G, Hoffer BJ, Wang Y (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hulse RE, Winterfield J, Kunkler PE, Kraig RP (2001) Astrocytic clasmatodendrosis in hippocampal organ culture. Glia 33:169–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH III, Lehrmann E, Camandola S, Becker KG, Gorospe M, Mattson MP (2013) Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61:1018–1028

    Article  PubMed  Google Scholar 

  • Jayakumar AR, Panickar KS, Murthy Ch R, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784

    Article  PubMed  CAS  Google Scholar 

  • Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH (2009) Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29:7003–7014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kahraman S, Bambrick LL, Fiskum G (2011) Effects of FK506 and cyclosporin A on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J Neurosci Res 89:1973–1978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kettenmann H, Ransom B (2005) Neuroglia. Oxford University Press, New York

    Google Scholar 

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2000) Delayed neuronal death. Neuropathology 20:S95–S97

    Article  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tsujimoto Y, Ohtsuki T, Kuwabara K, Matsushita K, Yang G, Tanabe H, Martinou JC, Hori M, Yanagihara T (1998) Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke 29:2616–2621

    Article  PubMed  CAS  Google Scholar 

  • Kole AJ, Swahari V, Hammond SM, Deshmukh M (2011) miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25:125–130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Smith CL, Barone FC, Ellison JA, Lysko PG, Li K, Simpson IA (1999) Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 68:29–41

    Article  PubMed  CAS  Google Scholar 

  • Longuemare MC, Hill MP, Swanson RA (1994) Glycolysis can prevent non-synaptic excitatory amino acid release during hypoxia. Neuroreport 5:1789–1792

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bayghen E, Ortega A (2011) Glial glutamate transporters: new actors in brain signaling. IUBMB Life 63:816–823

    Article  PubMed  CAS  Google Scholar 

  • Martinez G, Musumeci G, Loreto C, Carnazza ML (2007) Immunohistochemical changes in vulnerable rat brain regions after reversible global brain ischaemia. J Mol Histol 38:295–302

    Article  PubMed  CAS  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitani A, Tanaka K (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci 23:7176–7182

    PubMed  CAS  Google Scholar 

  • Moon JM, Xu L, Giffard RG (2013) Inhibition of microRNA-181 reduces forebrain ischemia induced neuronal loss. J Cereb Blood Flow Metab 33(12):1976–82

    Article  PubMed  CAS  Google Scholar 

  • Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288:7105–7116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19:231–245

    Article  PubMed  CAS  Google Scholar 

  • Niizuma K, Endo H, Nito C, Myer DJ, Chan PH (2009) Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 40:618–625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    PubMed  CAS  Google Scholar 

  • Ouyang YB, Giffard RG (2004) Cellular neuroprotective mechanisms in cerebral ischemia: Bcl-2 family proteins and protection of mitochondrial function. Cell Calcium 36:303–311

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Giffard RG (2012) ER-mitochondria crosstalk during cerebral ischemia: molecular chaperones and ER-mitochondrial calcium transfer. Int J Cell Biol 2012:493934

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang YB, Giffard RG (2013) MicroRNAs regulate the chaperone network in cerebral ischemia. Transl Stroke Res 4(6):693–703

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Kuroda S, Kristian T, Siesjo BK (1997) Release of mitochondrial aspartate aminotransferase (mAST) following transient focal cerebral ischemia suggests the opening of a mitochondrial permeability transition pore. Neurosci Res Comm 20:167–173

    Article  CAS  Google Scholar 

  • Ouyang YB, Tan Y, Comb M, Liu CL, Martone ME, Siesjo BK, Hu BR (1999) Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and activation of caspase-like proteases. J Cereb Blood Flow Metab 19:1126–1135

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouyang YB, Lu Y, Yue S, Giffard RG (2012a) miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12:213–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, Sun X, Giffard RG (2012b) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45:555–563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouyang YB, Stary CM, Yang GY, Giffard R (2013a) microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 14:90–101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouyang YB, Xu L, Lu Y, Sun X, Yue S, Xiong XX, Giffard RG (2013b) Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia 61:1784–1794

    PubMed  Google Scholar 

  • Ouyang YB, Stary CM, White RE, Voloboueva LA, Giffard RG (2014a) The use of microRNAs to modulate redox and immune response to stroke. Antiox Redox Signal, Epub ahead of print

    Google Scholar 

  • Ouyang YB, Xu L, Yue S, Liu S, Giffard RG (2014b) Neuroprotection by astrocytes in brain ischemia: importance of microRNAs. Neurosci Lett 565:53–8

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Olarte JP, Roberts B, Nowak TS Jr, Pulsinelli WA (1998) Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 57:231–238

    Article  PubMed  CAS  Google Scholar 

  • Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    Article  PubMed  CAS  Google Scholar 

  • Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21:1876–1883

    PubMed  CAS  Google Scholar 

  • Rao SD, Yin HZ, Weiss JH (2003) Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci 23:2627–2633

    PubMed  CAS  Google Scholar 

  • Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  PubMed  CAS  Google Scholar 

  • Reichert SA, Kim-Han JS, Dugan LL (2001) The mitochondrial permeability transition pore and nitric oxide synthase mediate early mitochondrial depolarization in astrocytes during oxygen-glucose deprivation. J Neurosci 21:6608–6616

    PubMed  CAS  Google Scholar 

  • Rosenberg PA, Aizenman E (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett 103:162–168

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193

    Article  PubMed  CAS  Google Scholar 

  • Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, Shi J, Jia L (2012) Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res 216:225–230

    Article  PubMed  CAS  Google Scholar 

  • Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Chen J, Graham SH (1994) Glucose can fuel glutamate uptake in ischemic brain. J Cereb Blood Flow Metab 14:1–6

    Article  PubMed  CAS  Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, Ao Y, Olsen RW, Yang XW, Mody I, Sofroniew MV, Sun YE (2011) Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci 31:8306–8319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • THACAS (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  • Trotti D, Rizzini BL, Rossi D, Haugeto O, Racagni G, Danbolt NC, Volterra A (1997) Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J Neurosci 9:1236–1243

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T, Bonner HP, Engel T, Woods I, Matsushima S, Ward MW, Taki W, Henshall DC, Concannon CG, Prehn JH (2011) Bcl-2 homology domain 3-only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition in vivo. Eur J Neurosci 33:401–408

    Article  PubMed  Google Scholar 

  • Uchino H, Elmer E, Uchino K, Lindvall O, Siesjo BK (1995) Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand 155:469–471

    Article  PubMed  CAS  Google Scholar 

  • Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102:1383–1394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Voloboueva LA, Emery JF, Sun X, Giffard RG (2013) Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett 587:756–762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381

    Article  PubMed  CAS  Google Scholar 

  • Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Lee JE, Giffard RG (1999) Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277:193–197

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Sapolsky RM, Giffard RG (2001) Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol 169:416–424

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG (2010) Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 58:1042–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Perez-Polo JR, Qian J, Birnbaum Y (2011) The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43:534–542

    Article  PubMed  CAS  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK (2003a) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85:1026–1036

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Ahram A, Berman RF, Muizelaar JP, Lyeth BG (2003b) Early loss of astrocytes after experimental traumatic brain injury. Glia 44:140–152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Grant sponsor: NIH; Grant numbers: NS084396, NS053898, NS080177. The authors thank William Magruder for help preparing the manuscript.

Conflict of interest The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Bing Ouyang Ph.D. or Rona G. Giffard M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouyang, YB., Xu, L., Liu, S., Giffard, R.G. (2014). Role of Astrocytes in Delayed Neuronal Death: GLT-1 and its Novel Regulation by MicroRNAs. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_9

Download citation

Publish with us

Policies and ethics