Skip to main content

Glutamate Metabolism in the Brain Focusing on Astrocytes

  • Chapter
  • First Online:
Book cover Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate–glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki C, Milner TA, Berger SB, Sheu KF, Blass JP, Pickel VM (1987) Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18:305–318

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Waagepetersen HS, Sorensen M, Ott P, Vilstrup H, Keiding S, Schousboe A (2013) Role of branched chain amino acids in cerebral ammonia homeostasis related to hepatic encephalopathy. Metab Brain Dis 28:209–215

    Article  PubMed  CAS  Google Scholar 

  • Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1998) [U-13C]Aspartate metabolism in cultured cortical astrocytes and cerebellar granule neurons studied by NMR spectroscopy. Glia 23:271–277

    Article  PubMed  CAS  Google Scholar 

  • Benuck M, Stern F, Lajtha A (1972) Regional and subcellular distribution of aminotransferases in rat brain. J Neurochem 19:949–957

    Article  PubMed  CAS  Google Scholar 

  • Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293–298

    Article  PubMed  CAS  Google Scholar 

  • Berl S, Clarke DD (1969) Compartmentation of amino acid metabolism. In: Lajtha A (ed) Handbook of neurochemistry, vol 2. Plenum, New York, pp 447–472

    Chapter  Google Scholar 

  • Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7:452–470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS (2010) Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A 107:366–371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper AJ (1988) L-Glutamate(2-oxoglutarate) aminostransferases. In: Kvamme E (ed) Glutamine and glutamate in mammals, vol I. CRC Press, Boca Raton, FL, pp 123–152

    Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    PubMed  CAS  Google Scholar 

  • Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 254:4982–4992

    PubMed  CAS  Google Scholar 

  • Cotman CW, Foster A, Lanthorn T (1981) An overview of glutamate as a neurotransmitter. Adv Biochem Psychopharmacol 27:1–27

    PubMed  CAS  Google Scholar 

  • Dadsetan S, Bak LK, Sorensen M, Keiding S, Vilstrup H, Ott P, Leke R, Schousboe A, Waagepetersen HS (2011) Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochem Int 58:482–488

    Article  Google Scholar 

  • Dadsetan S, Kukolj E, Bak LK, Sorensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS (2013) Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab 33:1235–1241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Engel PC, Dalziel K (1967) The equilibrium constants of the glutamate dehydrogenase systems. Biochem J 105:691–695

    PubMed  CAS  PubMed Central  Google Scholar 

  • Errera M, Greenstein JP (1949) Phosphate-activated glutaminase in kidney and other tissues. J Biol Chem 178:495–502

    PubMed  CAS  Google Scholar 

  • Fahien LA, Hsu SL, Kmiotek E (1977) Effect of aspartate on complexes between glutamate dehydrogenase and various aminotransferases. J Biol Chem 252:1250–1256

    PubMed  CAS  Google Scholar 

  • Farinelli SE, Nicklas WJ (1992) Glutamate metabolism in rat cortical astrocyte cultures. J Neurochem 58:1905–1915

    Article  PubMed  CAS  Google Scholar 

  • Fries A, Dadsetan S, Keiding S et al (2014) Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats. J Cereb Blood Flow Metab 34:460–466

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel D (1966) A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, the Krebs cycle, and related metabolites. J Biol Chem 241:3918–3929

    PubMed  CAS  Google Scholar 

  • Genda EN, Jackson JG, Sheldon AL et al (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM (2010) Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285:265–276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY, Firestein BL (2013) Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia 61:394–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krebs HA (1953) Equilibria in transamination systems. Biochem J 54:82–86

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66:951–958

    Article  PubMed  CAS  Google Scholar 

  • Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588

    Article  PubMed  CAS  Google Scholar 

  • Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Dev Neurosci 3:177–185

    Article  PubMed  CAS  Google Scholar 

  • Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins–novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7:841–853

    Article  PubMed  CAS  Google Scholar 

  • Leke R, Bak LK, Anker M et al (2011) Detoxification of a GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  PubMed  CAS  Google Scholar 

  • Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  PubMed  CAS  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Jahr CE, Rubio ME (2005) High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25:7538–7547

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59:525–533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McKenna M (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191

    Article  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Hopkins IB, Lindauer SL, Bamford P (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48:629–636

    Article  PubMed  CAS  Google Scholar 

  • McKenna M, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism of the brain. In: Brady ST, Siegel GJ, Albers RW, Price DI (eds) Basic neurochemistry. Academic/Elsevier, Waltham, MS, pp 200–231

    Chapter  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  • Obel LF, Andersen KMH, Bak LK, Schousboe A, Waagepetersen HS (2012) Effects of adrenergic agents on intracellular Ca2+ homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling: implications for glutamate neurotransmission and excitotoxicity. Neurotox Res 21:405–417

    Article  PubMed  CAS  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  PubMed  CAS  Google Scholar 

  • Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okada Y, Taniguchi H, Schimada C (1976) High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science 194:620–622

    Article  PubMed  CAS  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18

    Article  PubMed  CAS  Google Scholar 

  • Öz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    Article  PubMed  Google Scholar 

  • Öz G, Okar DA, Henry PG (2012) Glutamate-glutamine cycle and anaplerosis. In: Choi I, Gruetter R (eds) Neural metabolism in vivo, vol 4, Advances in neurobiology. Springer, New York, pp 921–946

    Chapter  Google Scholar 

  • Pamiljans V, Krishnaswamy PR, Dumville G, Meister A (1962) Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. Biochemistry 1:153–158

    Article  PubMed  CAS  Google Scholar 

  • Quastel JH (1975) Metabolic compartmentation in the brain and effects of metabolic inhibitors. In: Berl S, Clarke DD, Scheider D (eds) Metabolic compartmentation and neurotransmission, vol 6. Plenum, New York, pp 337–361

    Chapter  Google Scholar 

  • Roberts E, Frankel S (1950) gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63

    PubMed  CAS  Google Scholar 

  • Ronzio RA, Rowe WB, Meister A (1969) Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry 8:1066–1075

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, De Feyter HM, Maciejewski PK, Behar KL (2012) Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 37:2597–2612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito K, Barber R, Wu J, Matsuda T, Roberts E, Vaughn JE (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci U S A 71:269–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salganicoff L, Derobertis E (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine and gamma-aminobutyric acid cycles in rat brain. J Neurochem 12:287–309

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (2012) Studies of brain metabolism: a historical perspective. In: Choi I, Gruetter R (eds) Neural metabolism in vivo, vol 4, Advances in neurobiology. Springer, New York, pp 909–920

    Chapter  Google Scholar 

  • Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Bak LK, Madsen KK, Waagepetersen HS (2012) Amino acid neurotransmitter synthesis and removal. In: Kettenmann H, Ransom B (eds) Neuroglia. Oxford University Press, Oxford, UK, pp 443–456

    Chapter  Google Scholar 

  • Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol 4:102. doi:10.3389/fendo.2013.00102

    Article  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Hassel B, Muller TB, Unsgard G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993a) NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15:351–358

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993b) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993c) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    Article  PubMed  CAS  Google Scholar 

  • Spanaki C, Zaganas I, Kounoupa Z, Plaitakis A (2012) The complex regulation of human glud1 and glud2 glutamate dehydrogenases and its implications in nerve tissue biology. Neurochem Int 61:470–481

    Article  PubMed  CAS  Google Scholar 

  • van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    Article  PubMed  CAS  Google Scholar 

  • Walls AB, Eyjolfsson EM, Smeland OB, Nilsen LH, Schousboe I, Schousboe A, Sonnewald U, Waagepetersen HS (2011) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31:494–503

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Westergaard N, Varming T, Peng L, Sonnewald U, Hertz L, Schousboe A (1993) Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J Neurosci Res 35:540–545

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Matsuda T, Roberts E (1973) Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem 248:3029–3034

    PubMed  CAS  Google Scholar 

  • Yu AC, Schousboe A, Hertz L (1982) Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J Neurochem 39:954–960

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M, Daikhin Y, Nelson D, Nissim I, Erecinska M (1996) Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes. J Neurochem 66:2136–2145

    Article  PubMed  CAS  Google Scholar 

  • Zaganas I, Waagepetersen HS, Georgopoulos P, Sonnewald U, Plaitakis A, Schousboe A (2001) Differential expression of glutamate dehydrogenase in cultured neurons and astrocytes from mouse cerebellum and cerebral cortex. J Neurosci Res 66:909–913

    Article  PubMed  CAS  Google Scholar 

  • Zaganas I, Kanavouras K, Mastorodemos V, Latsoudis H, Spanaki C, Plaitakis A (2009) The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 55:52–63

    Article  PubMed  CAS  Google Scholar 

  • Zielke HR, Tildon JT, Landry ME, Max SR (1990) Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes. Neurochem Res 15:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. McKenna Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schousboe, A., Scafidi, S., Bak, L.K., Waagepetersen, H.S., McKenna, M.C. (2014). Glutamate Metabolism in the Brain Focusing on Astrocytes. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_2

Download citation

Publish with us

Policies and ethics