Skip to main content

Glutamate and ATP: The Crossroads of Signaling and Metabolism in the Brain

  • Chapter
  • First Online:
Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

ATP and glutamate have emerged as highly versatile molecules for cellular metabolism and intercellular communication in the brain. Their metabolic and signaling pathways are interlaced. We concisely outline the synthesis and metabolism of these precious molecules, as well as their use as neurotransmitters in autocrine, paracrine, and heterocellular signaling. Functional diversity of this glutamatergic and purinergic signaling is defined by an expression of a multitude of receptors on neurons and glial cells alike. Both ATP and glutamate play a role in neuropathology. This chapter is meant to introduce the chapters that follow in this book dedicated to the in-depth overview of the role of glutamate and ATP in the brain metabolism and signaling in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  • Baltan S (2014) Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. Bioessays 34:218–225

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Verkhratsky A (2012) Purinergic signalling in the nervous system. Springer, Berlin, p 715

    Book  Google Scholar 

  • Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18:54–56

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1959) Chemical excitation of spinal neurons. Nature 183:611–612

    Article  PubMed  CAS  Google Scholar 

  • Ding S (2014) Ca2+ signaling in astrocytes and its role in ischemic stroke. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J Physiol 68:213–237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55:835–858

    Article  PubMed  CAS  Google Scholar 

  • Eulenburg V, Gomeza J (2010) Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res Rev 63:103–112

    Article  PubMed  CAS  Google Scholar 

  • Evans RH, Francis AA, Hunt K, Oakes DJ, Watkins JC (1979) Antagonism of excitatory amino acid-induced responses and of synaptic excitation in the isolated spinal cord of the frog. Br J Pharmacol 67:591–603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22:214–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franke H, Illes P (2014) Pathological potential of astroglial purinergic receptors. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic signal 8:629–657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi T (1954) Effects of sodium glutamate on the nervous system. Keio J Med 3:192–193

    Article  Google Scholar 

  • Hertz L, Xu J, Peng L (2014) Glycogenolysis and purinergic signaling. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 18:422–438

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506

    Article  PubMed  CAS  Google Scholar 

  • Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66:951–958

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Verkhratsky A, Pankratov Y (2011) Ionotropic ATP receptors in neuronal-glial communication. Semin Cell Dev Biol 22:220–228

    Article  PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Quastel JH (1972) Uptake and release of glutamate in cerebral-cortex slices from the rat. Biochem J 128:1117–1124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ouyang Y-B, Xu L, Liu S, Giffard RG (2014) Role of astrocytes in delayed neuronal death: GLT-1 and its novel regulation by microRNAs. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589–597

    Article  PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158:137–148

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012) Homeostatic function of astrocytes: Ca2+ and Na+ signalling. Transl Neurosci 3:334–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Baker BJ, Jeras M, Zorec R (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57:451–459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Patel MS (1974) The effect of ketone bodies on pyruvate carboxylation by rat brain mitochondria. J Neurochem 23:865–867

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2009) The P2X7 receptor-pannexin connection to dye uptake and IL-1β release. Purinergic Signal B 5:129–137

    Article  CAS  Google Scholar 

  • Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sayre NL, Chen Y, Sifuentes M, Stoveken B, Lechleiter JD (2014) Purinergic receptor stimulation decreases ischemic brain damage by energizing astrocyte mitochondria. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457:1207–1226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schousboe A (2012) Studies of brain metabolism: a historical perspective. In: Choi I, Grutter R (eds) Neural metabolism in vivo, vol 4, Advances in neurobiology. Springer, New York, pp 909–920

    Chapter  Google Scholar 

  • Schousboe A, Bak LK, Madsen KK, Waagepetersen HS (2013) Amino acid neurotransmitter synthesis and removal. In: Kettenmann H, Ransom BR (eds) Neuroglia, 3rd edn. Oxford University Press, Oxford, UK, pp 443–456

    Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen J, Danbolt NC, Ottersen OP (1995) Localization of glutamate and its membrane transport proteins. In: Stone TW (ed) CNS neurotransmitters and neuromodulators: glutamate. CRC Press, New York, pp 1–18

    Google Scholar 

  • Vardjan N, Kreft M, Zorec R (2014) Regulated exocytosis in astrocytes is as slow as the metabolic availability of gliotransmitters: focus on glutamate and ATP. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Burnstock G (2014) Purinergic and glutamatergic receptors on astroglia. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, New York

    Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal-glial transmission. J Anat 210:651–660

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Article  PubMed  CAS  Google Scholar 

  • Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocyte metabolism of [14C]glutamate. Glia 17:160–168

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3:291–298

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 39:954–960

    Article  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    Google Scholar 

Download references

Acknowledgments

Authors’ research was supported by Alzheimer’s Research Trust (UK) Programme Grant (ART/PG2004A/1) to A.V. and by the National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678) to V.P.

Conflict of Interest The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei Verkhratsky M.D., Ph.D., D.Sc. , Arne Schousboe or Vladimir Parpura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verkhratsky, A., Schousboe, A., Parpura, V. (2014). Glutamate and ATP: The Crossroads of Signaling and Metabolism in the Brain. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_1

Download citation

Publish with us

Policies and ethics