Skip to main content

Pathogenesis of Diabetic Nephropathy

  • Chapter
  • First Online:

Abstract

Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a major microvascular complication of diabetes mellitus. Traditionally, it has been identified as a triad of albuminuria, hypertension, and declining renal function in patients with diabetes mellitus. Earlier estimates suggested that nephropathy affects 30 % of patients with type 1 diabetes and 20 % of patients with type 2 diabetes. Prevalence of DN is a function of the duration of diabetes. Although recent estimates suggest a decline in the incidence among those with type 1 diabetes, DN remains a serious threat to overall survival in patients with diabetes mellitus [1]. It must, however, be noted that with improved blood pressure control and renal replacement therapy, the outlook has vastly changed, with a reported 10-year survival rate of 82 % as against a corresponding figure of 28 % in those with persistent albuminuria reported only three decades ago [2]. The utility of microalbuminuria in determining progression and prognosis is complicated by 10 % of patients with DN not having proteinuria, day-to-day variation in albumin excretion rate, regression to mean over longitudinal follow-up, and failure to demonstrate microalbuminuria as a therapeutic target in prevention of overt diabetic nephropathy in type 1 diabetic patients subjected to intensified glycemic control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013;97:1–18.

    Article  PubMed  Google Scholar 

  2. Eboh C, Chowdhury TA. Management of diabetic renal disease. Ann Transl Med. 2015;3:154.

    PubMed  PubMed Central  Google Scholar 

  3. The United States Renal Data System (USRDS). Excerpts from the USRDS 2009 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2010;55:S1.

    Google Scholar 

  4. Rudberg S, Osterby R. Decreasing glomerular filtration rate – an indicator of more advanced diabetic glomerulopathy in the early course of microalbuminuria in IDDM adolescents? Nephrol Dial Transplant. 1997;12:1149–54.

    Article  CAS  PubMed  Google Scholar 

  5. Nelson RG, Knowler WC, McCance DR, Sievers ML, Pettitt DJ, Charles MA, et al. Determinants of end-stage renal disease in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus and proteinuria. Diabetologia. 1993;36:1087–93.

    Article  CAS  PubMed  Google Scholar 

  6. Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DRM, et al. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: The Oxford Regional Prospective Study. Kidney Int. 2005;68:1740–9.

    Article  PubMed  Google Scholar 

  7. Premaratne E, Verma S, Ekinci EI, Theverkalam G, Jerums G, MacIsaac RJ. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015;41:5–17.

    Article  CAS  PubMed  Google Scholar 

  8. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52:691–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. Nephrol Dial Transplant. 2015.

    Google Scholar 

  10. Moriya T, Tsuchiya A, Okizaki S, Hayashi A, Tanaka K, Shichiri M. Glomerular hyperfiltration and increased glomerular filtration surface are associated with renal function decline in normo- and microalbuminuric type 2 diabetes. Kidney Int. 2012;81:486–93.

    Article  CAS  PubMed  Google Scholar 

  11. Premaratne E, MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums G. Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate. Diabetologia. 2005;48:2486–93.

    Article  CAS  PubMed  Google Scholar 

  12. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.

    Article  PubMed  Google Scholar 

  14. Rutledge JC, Ng KF, Aung HH, Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol. 2010;6:361–70.

    Article  CAS  PubMed  Google Scholar 

  15. Urizar RE, Schwartz A, Top Jr F, Vernier RL. The nephrotic syndrome in children with diabetes mellitus of recent onset. N Engl J Med. 1969;281:173–81.

    Article  CAS  PubMed  Google Scholar 

  16. Fioretto P, Caramori ML, Mauer M. The kidney in diabetes: dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008;51:1347–55.

    Article  CAS  PubMed  Google Scholar 

  17. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steffes MW, Schmidt D, McCrery R, Basgen JM, International Diabetic Nephropathy Study Group. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 2001;59:2104–13.

    Article  CAS  PubMed  Google Scholar 

  19. Romagnani P, Remuzzi G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab. 2013;24:13–20.

    Article  CAS  PubMed  Google Scholar 

  20. Singh AK, Mo W, Dunea G, Arruda JA. Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol. 1998;9:802–10.

    CAS  PubMed  Google Scholar 

  21. Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol. 2013;58:259–71.

    Article  CAS  PubMed  Google Scholar 

  22. Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol. 2006;17:3093–104.

    Article  CAS  PubMed  Google Scholar 

  23. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9:355–66.

    Article  CAS  PubMed  Google Scholar 

  24. Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris K, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes. 2008;57:460–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tavafi M. Complexity of diabetic nephropathy pathogenesis and design of investigations. J Renal Inj Prev. 2013;2:59–62.

    PubMed  PubMed Central  Google Scholar 

  26. Stehouwer CD, Stroes ES, Hackeng WH, Mulder PG, Den Ottolander GJ. von Willebrand factor and development of diabetic nephropathy in IDDM. Diabetes. 1991;40:971–6.

    Article  CAS  PubMed  Google Scholar 

  27. Stehouwer CD, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ, den Ottolander GJ. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet. 1992;340:319–23.

    Article  CAS  PubMed  Google Scholar 

  28. Fioretto P, Stehouwer CD, Mauer M, Chiesura-Corona M, Brocco E, Carraro A, et al. Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia. 1998;41:233–6.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa T, Tanabe K, Croker BP, Johnson RJ, Grant MB, Kosugi T, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011;7:36–44.

    Article  PubMed  Google Scholar 

  30. Rivero A, Mora C, Muros M, Garcia J, Herrera H, Navarro-Gonzalez JF. Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clin Sci (Lond). 2009;116:479–92.

    Article  CAS  Google Scholar 

  31. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Rev Nephrol. 2011;7:327–40.

    Article  CAS  Google Scholar 

  32. Furuta T, Saito T, Ootaka T, Soma J, Obara K, Abe K, et al. The role of macrophages in diabetic glomerulosclerosis. Am J Kidney Dis. 1993;21:480–5.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton). 2006;11:226–31.

    Article  Google Scholar 

  34. Yonemoto S, Machiguchi T, Nomura K, Minakata T, Nanno M, Yoshida H. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. Clin Exp Nephrol. 2006;10:186–92.

    Article  CAS  PubMed  Google Scholar 

  35. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial. 2004;19:2987–96.

    Article  CAS  Google Scholar 

  36. Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int. 2004;65:116–28.

    Article  CAS  PubMed  Google Scholar 

  37. Hirata K, Shikata K, Matsuda M, Akiyama K, Sugimoto H, Kushiro M, et al. Increased expression of selectins in kidneys of patients with diabetic nephropathy. Diabetologia. 1998;41:185–92.

    Article  CAS  PubMed  Google Scholar 

  38. Wen YS, Gu JL, Li SL, Reddy MA, Natarajan R, Nadler JL. Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology. 2006;147:2518–25.

    Article  CAS  PubMed  Google Scholar 

  39. Ha HJ, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose-induced nuclear factor-kappa B activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13:894–902.

    CAS  PubMed  Google Scholar 

  40. Chen JS, Lee HS, Jin JS, Chen A, Lin SH, Ka SM, et al. Attenuation of mouse mesangial cell contractility by high glucose and mannitol: Involvement of protein kinase C and focal adhesion kinase. J Biomed Sci. 2004;11:142–51.

    Article  CAS  PubMed  Google Scholar 

  41. Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med. 1990;172:391–4.

    Article  CAS  PubMed  Google Scholar 

  42. Badri S, Dashti-Khavidaki S, Lessan-Pezeshki M, Abdollahi M. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J Pharm Pharm Sci. 2011;14:128–37.

    Article  CAS  PubMed  Google Scholar 

  43. Perkins RM, Aboudara MC, Uy AL, Olson SW, Cushner HM, Yuan CM. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2009;53:606–16.

    Article  CAS  PubMed  Google Scholar 

  44. Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes. 2006;55:2747–56.

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Guan TJ, Zheng SR, Grosjean F, Liu WC, Xiong HB, et al. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Lab Invest. 2011;91:1459–71.

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 2001;59:1626–40.

    Article  CAS  PubMed  Google Scholar 

  47. Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Mezzano S, Egido J. Renin-angiotensin system and renal damage: emerging data on angiotensin II as a proinflammatory mediator. Contrib Nephrol. 2001;135:123–37.

    Google Scholar 

  48. Mezzano S, Droguett A, Burgos ME, Ardiles LG, Flores CA, Aros CA, et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl. 2003;86:S64–70.

    Google Scholar 

  49. Wolf G, Mueller E, Stahl RA, Ziyadeh FN. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest. 1993;92:1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320:1161–5.

    Article  CAS  PubMed  Google Scholar 

  51. Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8, e1002921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mueller PW, Rogus JJ, Cleary PA, Zhao Y, Smiles AM, Steffes MW, et al. Genetics of Kidneys in Diabetes (GoKinD) study: a genetics collection available for identifying genetic susceptibility factors for diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol. 2006;17:1782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Igo Jr RP, Iyengar SK, Nicholas SB, Goddard KA, Langefeld CD, Hanson RL, et al., Family Investigation of Nephropathy and Diabetes Research Group. Genomewide linkage scan for diabetic renal failure and albuminuria: the FIND study. Am J Nephrol. 2011;33:381–9.

    Google Scholar 

  54. Tarnow L, Groop PH, Hadjadj S, Kazeem G, Cambien F, Marre M, et al. European rational approach for the genetics of diabetic complications – EURAGEDIC: patient populations and strategy. Nephrol Dial Transplant. 2008;23:161–8.

    Article  CAS  PubMed  Google Scholar 

  55. Freedman BI, Langefeld CD, Lu L, Divers J, Comeau ME, Kopp JB, et al. Differential effects of MYH9 and APOL1 risk variants on FRMD3 association with diabetic ESRD in African Americans. PLoS Genet. 2011;7:e1002150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010;6:e1000842.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nazir N, Siddiqui K, Al-Qasim S, Al-Naqeb D. Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways. BMC Med Genet. 2014;15:103.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42:376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58:12–1236.

    Article  Google Scholar 

  64. Zhang E, Wu Y. Metabolic memory: mechanisms and implications for diabetic vasculopathies. Sci China Life Sci. 2014;57:845–51.

    Article  CAS  PubMed  Google Scholar 

  65. Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2014;10:88–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, L., Khardori, R. (2017). Pathogenesis of Diabetic Nephropathy. In: Managing Diabetic Nephropathies in Clinical Practice. Adis, Cham. https://doi.org/10.1007/978-3-319-08873-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08873-0_2

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-08872-3

  • Online ISBN: 978-3-319-08873-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics