Skip to main content

Robustness Study of a Multimodal Compass Inspired from HD-Cells and Dynamic Neural Fields

  • Conference paper
From Animals to Animats 13 (SAB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8575))

Included in the following conference series:

Abstract

In this paper, we study a robust multi modal compass for a vision based navigation system. The model mimics several aspects of the head direction cells found in the postsubiculum of the rat. Idiothetic information is recalibrated according to the learning of visual stimuli associated to robust landmarks. The model is based on dynamic neural fields allowing building attractors associated to the compass direction. The novelty of the model relies in the way the decision of the sensor fusion is re-injected in the visual compass allowing a robust decision-making. Robotics experiments show the capability of the model to merge different sources of information when their predictions are coherent. When the information become incoherent because the inputs propose quite different directions, the system is able to bifurcate on one coherent solution in order to maintain the temporal coherency of its behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics 27(2), 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arleo, A.: Spatial learning and navigation in neuro-mimetic systems. In: Ph.D. dissertation, Universit de Paris VI (2000)

    Google Scholar 

  3. Arleo, A., Déjean, C., Allegraud, P., Khamassi, M., Zugaro, M.B., Wiener, S.I.: Optic flow stimuli update anterodorsal thalamus head direction neuronal activity in rats. Journal of Neuroscience 33, 16790–16795 (2013)

    Article  Google Scholar 

  4. Caltabiano, D., Muscato, G., Russo, F.: Localization and self-calibration of a robot for volcano exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 586–591 (2004)

    Google Scholar 

  5. Cartwright, B., Collett, T.: Landmark learning in bees 151, 521–543 (1983)

    Google Scholar 

  6. Cuperlier, N., Quoy, M., Gaussier, P.: Neurobiologically inspired mobile robot navigation and planning. Frontiers in NeuroRobotics, 1 (2007)

    Google Scholar 

  7. Cuperlier, N., Quoy, M., Giovannangeli, C., Gaussier, P., Laroque, P.: Transition cells for navigation in an unknown environment, 286–297 (2006)

    Google Scholar 

  8. Etienne, A., Jeffery, K.: Path integration in mammals. Hippocampus, 180–192 (2004)

    Google Scholar 

  9. Franz, M., Schlkopf, B., Bltof, B.: Homing by parametrized scene matching. In: Advances in Artificial Life: Proc. of the European Conference on Artificial Life (1997)

    Google Scholar 

  10. Gaussier, P., Joulain, C.: A model of visual navigation: How to explain “place cells” and “view cells” activities. In: European Conference of Visual Perception ECVP 1998 (1998)

    Google Scholar 

  11. Gaussier, P., Joulain, C., Banquet, J., Leprtre, S., Revel, A.: The visual homing problem: An example of robotics/biology cross fertilization. Robotics and Autonomous System 30, 155–180 (2000)

    Article  Google Scholar 

  12. Gaussier, P., Zrehen, S.: Perac: A neural architecture to control artificial animals. Robotics and Autonomous Systems 16(2), 291–320 (1995)

    Article  Google Scholar 

  13. Giovannangeli, C., Gaussier, P.: Orientation system in robots: Merging allothetic and idiothetic estimations. In: 13th International Conference on Advanced Robotics (ICAR 2007), pp. 349–354 (2012)

    Google Scholar 

  14. Jauffret, A., Cuperlier, N., Tarroux, P., Gaussier, P.: From self-assessment to frustration, a small step toward autonomy in robotic navigation. Frontier in Neurobotics (2013)

    Google Scholar 

  15. Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)

    Google Scholar 

  16. Leprêtre, S., Gaussier, P., Cocquerez, J.: From navigation to active object recognition. In: The Sixth Int. Conf. on Simulation for Adaptive Behavior SAB 2000 (2000)

    Google Scholar 

  17. Martinelli, A., Tomatis, N., Siegwart, R.: Simultaneous localization and odometry self calibration for mobile robot. In: Autonomous Robots, vol. 22, pp. 75–85 (2006)

    Google Scholar 

  18. Panzieri, F.P.S., Ulivi, G.: Vision based navigation using kalman approach for slam. In: 11th. Int. Conf. on Advanced Robotics, Coimbra, Portugal (2003)

    Google Scholar 

  19. Redish, A., Elga, A., Touretzky, D.: Head direction cells in the deep cell layers of dorsal presubiculum in freely moving rats. Network, 10 (1984)

    Google Scholar 

  20. Redish, A., Elga, A., Touretzky, D.: A coupled attractor model of vision can sometimes predict a correct estimation, calibrating the rodent head direction system. Network, 7 (1996)

    Google Scholar 

  21. Rfer, T.: Controlling a wheelchair with image-based homing. In: AISB Symposium on Spatial Reasoning in Mobile Robots and Animals (1997)

    Google Scholar 

  22. Sheynikhovich, D., Grèzes, F., King, J.-R., Arleo, A.: Exploratory behaviour depends on multisensory integration during spatial learning. Artificial Neural Networks and Machine Learning 7552, 296–303 (2012)

    Google Scholar 

  23. Taube, J.S.: The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience 30, 181–207 (2007)

    Article  MathSciNet  Google Scholar 

  24. Taube, J.S.: Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. Journal of Neurosciences 15, 70–86 (1995)

    Google Scholar 

  25. Taube, J.S., Muller, R.U., Ranck Jr., J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. ii. effects of environmental manipulations. Journal of Neurosciences 10, 436–447 (1990)

    Google Scholar 

  26. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann (2002)

    Google Scholar 

  27. Widrow, B., Hoff, M.E.: Adaptive switching circuits. IRE Wescon Convention Record 4, 96–104 (1960)

    Google Scholar 

  28. Zugaro, M.B., Arleo, A., Berthoz, A., Wiener, S.I.: Rapid spatial reorientation and head direction cells. Journal of Neurosciences 23, 3478–3482 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Delarboulas, P., Gaussier, P., Caussy, R., Quoy, M. (2014). Robustness Study of a Multimodal Compass Inspired from HD-Cells and Dynamic Neural Fields. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds) From Animals to Animats 13. SAB 2014. Lecture Notes in Computer Science(), vol 8575. Springer, Cham. https://doi.org/10.1007/978-3-319-08864-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08864-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08863-1

  • Online ISBN: 978-3-319-08864-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics