Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 374 Accesses

Abstract

Water elapses throughout the Earth in forms of well known cyclic processes as evaporation of the oceans, river discharge and rainfall. Nevertheless, the cycle has some aspects that are less known, such as the hydrological cycle involving the karst groundwater flow.

Now the sun, moving as it does, sets up processes of change and becoming and decay, and by its agency the finest and sweetest water is every day carried up and is dissolved into vapour and rises to the upper region, where it is condensed again by the cold and so returns to the earth. This, as we have said before, is the regular course of nature.

Aristotle (fl. c. 384 BC–c. 322 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford DC, Williams P (1989b) Karst geomorphology and hydrology. Chapman & Hall, London

    Book  Google Scholar 

  2. Klimchouk A (2004) Towards defining, delimiting and classifying epikarst: its origin, processes and variants of geomorphic evolution. Institute of Geological Sciences, National Academy of Science of Ukraine

    Google Scholar 

  3. Cvijic J (1893) Das karstphaenomen. Geographische Abhandlung 21:218–329

    Google Scholar 

  4. Ford D, Ewers R (1978) The development of limestone cave systems in the dimensions of length and depth. Int J Speleol 10:213–244

    Article  Google Scholar 

  5. Ford DC, Williams P (2007) Karst geomorphology and hydrology. Wiley, Chichester

    Book  Google Scholar 

  6. Summerfield MA (1991) Global geomorphology. Pearson Education Limited, Harlow

    Google Scholar 

  7. Jennings J (1985) Karst geomorphology. Basil Blackwell Ltd, Oxford

    Google Scholar 

  8. EPA (2002). A Lexicon of cave and karst terminology with special to environmental karst hydrology. EPA, 600, R-02, 003, (2002) Technical report. EPA, Washington

    Google Scholar 

  9. Yevjevich V (1959) Analytical integration of the differential equation for water storage. J Res Nat Bureau Stan B Math Math Phys 63B:43–52

    Article  Google Scholar 

  10. Mangin A (1975) Contribution a l‘étude hydrodynamique des aquifères karstiques. PhD thesis, Institut des Sciences de la Terre de l‘Université de Dijon

    Google Scholar 

  11. Bakalowicz M (2005) Karst groundwater: a chalenge for new resources. Hydrol J 160:13–14

    Google Scholar 

  12. Martel E (1910) La theorie de grundwasser et les eaux souterraines du karst. J Cave Karst Stud 21:126–130

    Google Scholar 

  13. Dooge J (1973) Linear theory of hydrologic systems. Technical report, 1468. U.S. Agricultural Research Service.

    Google Scholar 

  14. White WB (2003) Conceptual models for carbonate aquifers. In: Speleogenesis and evolution of Karst aquifers, The Virtual Scientific Journal

    Google Scholar 

  15. Drogue C (1974) Structure de certains aquifères karstiques d’après les résultats de travaux de forage. Comptes Rendues Académie des Sci Paris 278:2621–2624

    Google Scholar 

  16. Király L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. Bull d’Hydrogéologie 16:77–98

    Google Scholar 

  17. White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. J Cave Karst Stud 69:13–26

    Google Scholar 

  18. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32–2:114–123

    Article  Google Scholar 

  19. Angelini P (1997) Correlation and spectral analysis of two hydrogeological systems in central Italy. Hydrol Sci 42(3):425–438

    Article  Google Scholar 

  20. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231

    Article  Google Scholar 

  21. Martin J White W (2008) Frontiers of karst research. Special Publication 13, Karst Waters Institute, Leesburg, Virginia Printed in the USA

    Google Scholar 

  22. Andreo B, Vías J, López-Geta J, Carrasco F, Durán J, Jiménez P (1996) Propuesta metodológica para la estimación de la recarga en acuíferos carbonáticos. Boletín Geológico y Minero 115(2):177–186

    Google Scholar 

  23. Shuster E, White W (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  24. Palmer AN (2002) A distinctly european approach to karst hydrology. Hydrol Processes 16(14):2905–2906

    Article  Google Scholar 

  25. Jemcov I, Petric M (2009) Measured precipitation vs. effective infiltration and their influence on the assessment of karst systems based on results of the time series analysis. J Hydrol 379(3–4):304–314

    Article  Google Scholar 

  26. El-Baroudy I, Elshorbagy A, Carey SK, Giustolisi O, Savic D (2010) Comparison of three data-driven techniques in modelling the evapotranspiration process. J Hydroinformatics 12(4):365–379

    Article  Google Scholar 

  27. Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  28. Eagleman J (1967) Pan evaporation, potential and actual evapotranspiration. J Appl Meteorol 6(3):482–488

    Article  Google Scholar 

  29. Worthington SR (2003) A comprehensive strategy for understanding flow in carbonate aquifer. In: Speleogenesis and evolution of Karst aquifers, The Virtual Scientific Journal

    Google Scholar 

  30. Maillet O (1905) Essais d’hydraulique souterraine et fluviale. Hermann, Paris

    Google Scholar 

  31. Williams P, Ford D (1989a) Karst geomorphology and hydrology. Unwin-Hyman, London

    Google Scholar 

  32. Trilla J, Pascual I (1974) Análisis de hidrogramas de una surgencia cárstica (Fuenmayor, Huesca). Centro de Estudios, Investigación y Aplicaciones del Agua 87:20–28

    Google Scholar 

  33. Milanovic P (1976) Karst hydrology and water resources, vol 1. Water Resources Publications, Colorado, pp 165–191, V. Yevjevich

    Google Scholar 

  34. Torbarov K (1976) In: Yevjevich V (ed) Estimation of permeability and effective porosity in karst on the basis of recession curve analysis. Water Resources Publications, Colorado, pp 121–136

    Google Scholar 

  35. Milanovic P (1981) Karst hydrogeology. Water Resources Publications, Colorado

    Google Scholar 

  36. Wheater H, Jakeman A, Beven K (1993) Progress and directions in rainfall-runoff modelling. In: Jakeman AJ, Beck MB, McAleer MJ (eds) Modelling change in environmental systems. Wiley, New York

    Google Scholar 

  37. Padilla A, Pulido A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  38. Mangin A (1974) Notion de système karstique. Spelunca Mémoires 8:64–68

    Google Scholar 

  39. Mangin A (1981b) Utilisation des analyses corrélatoire et spectrale dans l’approche des systèmes hydrologiques. Comptes Rendues Acad des Sci Paris 293:401–404

    Google Scholar 

  40. Freixes A, Monterde M, Morin J, Ramoneda J (1996) Recursos hídricos e implicaciones ambientales del sistema de Aiguèira (Val d’Arán). In: Recursos hídricos en regiones kársticas, pp 53–71

    Google Scholar 

  41. Jiménez P, Andreo B, Durán J, Carrasco F, López-Geta J, Vadillo I, Vázquez M (2001) Estudio hidrodinámico del manantial de El tempul (sierra de las cabras, cádiz, sur de españa). Bol Geológico y Min 112(2):85–102

    Google Scholar 

  42. Jiménez P, Carrasco F, Andreo B, Durán J, López-Geta J (2002) Caracterización de acuíferos carbonáticos del sur de España a partir de su respuesta hidrodinámica, pp 105–113. F. Carrasco and B. Andreo

    Google Scholar 

  43. Amraoui F, Razack M, Bouchaou L (2004) Comportement d’une source karstique soumise à une sécheresse prolongée: la source bittit (maroc). Comptes Rendues Acad des Sci Geosci 336:1099–1109

    Article  Google Scholar 

  44. Pérez I, Jiménez P, Andreo B, Carrasco F (2004) Estudio de la descarga de la vertiente meridional de Sierra Tejera (Málaga) mediante análisis correlatorio y espectral. Geogaceta 35:163–166

    Google Scholar 

  45. Valdes D, Dupont J, Massei N, Laigne B, Rodet J (2006) Investigation of karst hydrodynamics and organization using autocorrelation and t-c curves. J Hydrol 329:432–443

    Article  Google Scholar 

  46. Andreo B, Jiménez P, Durán J, Carrasco F, Vadillo I, Mangin A (2006) Climatic and hydrological variations during the last 117–166 years in the south of the Iberian peninsula, from spectral and correlation analyses and continuous wavelets analyses. J Hydrol 324:24–39

    Article  Google Scholar 

  47. Box G, Jenkins G (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  48. Mangin A (1981a) Apportes des analyses corrélatoire et spectrale croisés dans la connaissance des systèmes hydrologiques. Comptes Rendues Acad des Sci Paris 293:1101–1104

    Google Scholar 

  49. Mangin A (1982a) L’approche systemique du karst, consequences conceptuelles et methodologiques. In Reunión monográfica sobre el karst, Larra

    Google Scholar 

  50. Mangin A, Pulido A (1983) Aplicación de los análisis de correlación y espectral en el estudio de acuíferos kársticos. Tecniterrae, pp 53–65

    Google Scholar 

  51. Benavente J, Pulido-Bosch A, Mangin A (1985) Application of correlation and spectral procedures to the study of discharge in a karstic system (Eastern Spain). In: Karst water resources (proceedings of the ankara-antalya symposium), pp 67–75

    Google Scholar 

  52. Cruz J, Ibarra V, Morales T (1987) Aplicación de los análisis de correlación y espectral en el estudio del hidrograma del manantial de Olalde (Vizcaya). Geolis 1:50–61

    Google Scholar 

  53. Pulido A, Marsily G, Benavente J (1987) Análisis de la descarga del Torcal de Antequera mediante deconvolución. Hidrogeología 2:17–28

    Google Scholar 

  54. Mangin A Pulido-Bosch A (1991) Identification of the overexplotation of karstic aquifers using the statistical treatment of time series-2: Applications. In: Proceedings of the XXIII I.A.H. Congress “Aquifer overexplotation”, pp 69–72

    Google Scholar 

  55. Morales T, Antiguedad I (1992) Diferenciación de tres sistemas kársticos de Bizkaia (País Vasco) a partir del análisis de sus respuestas naturales, pp 215–231. G.T.I.C.E.K

    Google Scholar 

  56. Rodríguez J, Antiguedad I, Llanos H, Morales T (1994) Caracterización hidrodinámica de los acuíferos kársticos del pan de guajaibón, pinar del rio, cuba, a partir de las respuestas naturales de sus surgencias. In El Karst y los Acuíferos Kársticos, pp 137–166. Universidad de Granada, A. Pulido-Bosh and J.R. Fagundo and J.E. Rodríguez Rubio

    Google Scholar 

  57. Dreiss S (1982) Linear kernels for karst aquifers. Water Resour Res 18(4):865–876

    Article  Google Scholar 

  58. Padilla A, Pulido-Bosch A (1993) Application of a reservoir model to simulate the Torcal de Antequera karstic aquifer (Malaga), pp 51–66. A. Pulido-Bosch, University of Granada

    Google Scholar 

  59. Dreiss S (1983) Linear unit-response functions as indicators of recharge areas for large karst springs. J Hydrol 61:31–44

    Article  Google Scholar 

  60. Labat D, Ababou R, Mangin A (2000a) Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238:123–148

    Article  Google Scholar 

  61. Jukić D, Denic-Jukić V (2004) A frequency domain approach to groundwater recharge estimation in karst. J Hydrol 289:95–110

    Article  Google Scholar 

  62. Bailly-Comte V (2006) Approche descriptive, analyse fonctionnelle et modélisation hydrologique appliquées au bassin versant expérimental du Coulazou, Causse d’Aumelas, France. PhD thesis, Université Montpellier II. Sciences et Techniques du Languedoc Dijon, France

    Google Scholar 

  63. Neuman S, de Marsily G (1976) Identification of linear systems response by parametric programing. Water Resour Res 12(2):253–262

    Article  Google Scholar 

  64. Bohm B (1998) A model for predicting the response of a spring to extreme hydrologic conditions: A case of study of Big Sprong, Missouri. PhD thesis, Department of Geological Sicences, University of Missouri-Columbia

    Google Scholar 

  65. Bailly-Comte V (2008) Interactions hydrodynamiques entre les eaux de surface et les eaux souterraines en milieu karstique. PhD thesis, Université Montpellier II

    Google Scholar 

  66. Long A, Derickson R (1999) Linear systems analysis in a karst aquifer. J Hydrol 219:206–217

    Article  Google Scholar 

  67. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67:25–43

    Article  Google Scholar 

  68. Denic-Jukić V, Jukić D (2003) Composite transfer functions for karst aquifers. J Hydrol 274(1–4):80–94

    Article  Google Scholar 

  69. Labat D, Mangin A, Ababou R (2002b) Rainfall-runoff relations for karstic springs: multifractal analyses. J Hydrol 256(20):176–195

    Article  Google Scholar 

  70. Massei N, Dupont J, Mahler B, Laignel B, Fournier M, Valdes D, Ogier S (2006) Investigation transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analysis. J Hydrol 329:244–257

    Article  Google Scholar 

  71. Jukić D, Denic-Jukić V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374

    Article  Google Scholar 

  72. Lambrakis N, Andreou A, Polydoropoulos P, Georgopoulos E, Bountis T (2000) Nonlinear analysis and forecasting of a brackish Karstic spring. Water Resour Res 36(4):875–884

    Article  Google Scholar 

  73. Kurtulus B, Razack M (2007) Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrol J 15:241–254

    Google Scholar 

  74. Mirri D, Iuculano G, Traverso P, Pasini G, Filicori F (2003) Non-linear dynamic system modelling based on modified Volterra series approaches. Measurement 33:9–21

    Article  Google Scholar 

  75. Labat D, Ababou R, Mangin A (1999b) Analyse en ondelettes en hydrologie karstique. 2e partie: analyse en ondelettes croissé pluie-débit. Comptes Rendues Acad des Sci Geosci 329:881–887

    Google Scholar 

  76. Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238:149–178

    Article  Google Scholar 

  77. Labat D, Ababou R, Mangin A (2002a) Analyse multirésolution crosée des pluies et débits de sources karstiques. Comptes Rendues Académie des Sciences. Geoscience 334:551–556

    Article  Google Scholar 

  78. Mathevet T, Lepiller M, Mangin A (2004) Application of time-series analyses to the hydrological functioning of an alpine larstic system: the case of bange-l’eau-morte. Hydrol Earth Syst Sci 8:1051–1064

    Article  Google Scholar 

  79. Tam V, Smedt F, Batelann O, Dassargues A (2004) Characterization of a cavern conduit system in Vietnam by time series correlation, cross spectrum and wavelet analyses. Hydrol Sci J 49(5):879–900

    Article  Google Scholar 

  80. Majone B, Bellin A, Borsato A (2004) Runoff generation in karst catchments: multifractal analysis. J Hydrol 294:176–19

    Article  Google Scholar 

  81. Chinarro D, Cuchí J, Villarroel J (2010) Application of wavelet correlation analysis to the karst spring of Fuenmayor. San Julián de Banzo, Huesca, Spain. In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in Karst media. Springer, Heidelberg, pp 75–81

    Google Scholar 

  82. Paterson W (1994) The physics of glaciers, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  83. Clapperton C, Sugden D, Pelto M (1989) The relationship of land terminating and fjord glaciers to Holocene climatic change, South Georgia, Antarctica. In: Oerlemans J (ed) Glacier fluctuations and climatic change. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  84. UNEP/WGMS (2008) Global glacier changes: fact and figures. United Nation Environment Programme and World Glacier Monitoring Service

    Google Scholar 

  85. WMO (2010) World meteorological organization. Technical report, United Nations Environment Programme. International Council for Science, Implementation plan for the Global observing system for climate

    Google Scholar 

  86. (1972) Glossary and multilingual equivalents of karst terms. United Nations Educational. Scientific and Cultural Organization, Paris

    Google Scholar 

  87. Boultone GS (2007) Glacier science and environmental change. Blackwell Publishing, Glaciers and their coupling with hydraulic and sedimentary processes

    Google Scholar 

  88. Kiehl J, Trenberth K (1997) Earth’s annual global mean energy budget. Bulletin Amer Meteorol Soc 78:197–206

    Article  Google Scholar 

  89. Alhamann H (1933) Scientific results of the Swedish-Norwegian Arctic expedition in the summer of 1931, Part VIII. Geografiska Annaler, pp 161–216

    Google Scholar 

  90. Lagally M (1932) Zur thermodynamik der gletscher. Zeitschrift für Gletscherkunde 20:199–214

    Google Scholar 

  91. Miller MM (1976) Thermo-physical characteristics of glaciers-toward a rational classification. J Glaciol 16(74):297–300

    Google Scholar 

  92. Eraso A, Domínguez M (2006) Subpolar glaciers network as natural sensors of global warming evolution. Ukranian Antarct J 4–5:272–277

    Google Scholar 

  93. Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129

    Article  Google Scholar 

  94. Price A, Hendrie L, Dunne T (1979) Evaluation of a snowmelt model in a boreal forest. Controls on the production of snowmelt runoff. In: Proceedings of snow cover runoff 26–28:257–268

    Google Scholar 

  95. Flowers GE, Clarke GKC (2002) A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J Geophys Res B11, 2287, 107 (B11):2287–2305

    Google Scholar 

  96. Derikx L (1969) Glacier discharge simulation by ground-water analogue. In: Symposium on the hydrology of glaciers, Cambridge, pp 29–40 (publication No. 95 de l’ association internationale d’Hydrologie scientifique)

    Google Scholar 

  97. Hock R, Janssen P (2006) Modelling glacier hydrology. Encyclopedia of Hydrological Sciences, pp 2648–2655

    Google Scholar 

  98. Eraso A, Domínguez C (2005) GLACKMA (Glaciers, cryokarst and environment. http://www.glackma.es/. Last online Accessed 19 July 2012

  99. Walcher J (1773) Nachrichten von den eisbergen in tyrol. Kurzbocken. Frankfurt and Leipzig, p 99

    Google Scholar 

  100. Mousson A (1854) Die gletscher der jetztzeit. Schulthess. Bayerische staatsBibliothek münchener digitalisierungs zentrum, Technical report, Zurich, Verlag von Fr

    Google Scholar 

  101. Finsterwalder S, Schunk H (1887) Der Suldenferner. Zeitschrift des Deutsehen und Osterreichisehen Alpenvereins 18:72–89

    Google Scholar 

  102. Hess H (1904) Die gletscher. Braunschweig, F. Vieweg und sohn

    Google Scholar 

  103. Angström A (1933) On the dependence of ablation on air temperature, radiation and wind. Geografiska Annaler 15:264–271

    Google Scholar 

  104. Wallen C (1949) The shrinkage of the Karsa Glacier and its probable meteorological causes. Geografiska Annaler 31(1–4):275–291

    Article  Google Scholar 

  105. Alhamann H (1953) Glacier variations and climatic fluctuations. American Geographical Society, New York (Bowman Memorial Lectures, Series 3)

    Google Scholar 

  106. Hoinkes H (1955) Measurements of ablation and heat balance on Alpine glaciers. J Glaciol 2(17):497–501

    Article  Google Scholar 

  107. Braithwaite R, Olesen O (1988) Effects of glaciers on annual run-off. Johan Dahl Land. South Greenland. J Glaciol 34(117):200–206

    Google Scholar 

  108. Lafrenière MM, Sharp AK (2003) Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta. Hydological processes 17:1093–1118

    Article  Google Scholar 

  109. Ambach W (1988) Heat balance characteristics and ice ablation, western EGIG-profile, Greenland, Seventh Northern Research. Basins symposium/workshop: applied hydrology in the development of Northern Basins, May 25-June 1. Copenhagen Danish Society for Arctic Technology, Ililissat, pp 59–70

    Google Scholar 

  110. Kuhn M (1993) Methods of assessing the effects of climatic changes on snow and glacier hydrology. In: Snow and glacier hydrology. Kathmandu symposium. 1992 IAHS, vol 218, pp 135–144

    Google Scholar 

  111. Valero AC, Valero AD (2010) Exergy analysis of resources and processes. Servicio de Publicaciones de la Universidad de Zaragoza, Prensas universitaria de Zaragoza

    Google Scholar 

  112. Alhamann H (1948) Glaciological research on the North Atlantic coasts. The Royal Geographical Society, London

    Google Scholar 

  113. Sverdrup H (1935) Scientific results of the Norwegian-Swedish spitsbergen expedition in 1934. Part IV. The ablation on Ischsen’s Plateau and on the 14th of July Glacier. Geografiska Annaler, pp 145–218

    Google Scholar 

  114. Ambach W (1963) Untersuchungen zum Energieumsatz in der Ablationszone des grönlandischen. Inlandeises (Camp IV-EGIG, 69\(^\circ \)40\(^\prime \)05\(^{\prime \prime } \) N, 49\(^\circ \)37\(^\prime \)58\(^{\prime \prime } \) W). Meddelelser om Grønland, 174(4):311

    Google Scholar 

  115. Munro D (1990) Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arctic Alpine Resour 22(2):153–162

    Article  Google Scholar 

  116. Hay J, Fitzharris BB (1988) A comparison of the energy-balance and bulk aerodynamic approaches for estimating glacier melt. J Glaciol 1988:34

    Google Scholar 

  117. Greuell W, Knap W, Smeets P (1997) Elevational changes in meteorological variables along a midlatitude glacier during summer. J Geophys Res Atmos 102(D22):25941–25954

    Article  Google Scholar 

  118. Oerlemans J (1992) Climate sensitivity of glaciers in southern Norway: application of an energy balance model to Nigardsbreen, Hellstugubreeen and Alfotbreen. J Glaciol 38(129):223–232

    Google Scholar 

  119. Van de Wal R, Oerlemans J (1994) An energy balance model for the Greenland ice sheet. Globaland Planet Change 9:115–131

    Article  Google Scholar 

  120. Jóhannesson T (1997) The response of two Icelandic glaciers to climate warming computed with a degree-day glacier mass balance model coupled to a dynamic glacier model. J Glaciol 43(144):321–327

    Google Scholar 

  121. Arnold NSIC, Sharp MJ, Richards KS, Lawson WJ (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 42(140):77–89

    Google Scholar 

  122. Oerlemans J, Björnsson H, Kuhn M, Obleitner F, Palsson F, Smeets CJPP, Vugts HF, de Wolde J (1999) Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996, an overview. Boundary-Layer Meteorol 92(1):3–26

    Article  Google Scholar 

  123. Gray D, Prowse T (1993) Snow and floating ice. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill Inc, New York, pp 7.1–7.58

    Google Scholar 

  124. Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115

    Article  Google Scholar 

  125. Pellicciotti F, Brock B, aand P. Burlando, U. S., Funk, M., and Corripio, J. (2005) An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland. J Glaciol 51:573–587

    Google Scholar 

  126. Lang H (1973) Variations in the relation between glacier discharge and meteorological elements. In: Symposium on the Hydrol. Glaciers, vol 95, pp 85–94. IASH Publications

    Google Scholar 

  127. Wolfe P, English M (1995) Hydrometeorological relationships in a glacierized catchment in the Canadian high arctic. Hydrol Processes 9–8:911–921

    Article  Google Scholar 

  128. Hannah D, Gurnell A, McGregor G (2001) A conceptual, linear reservoir runoff model to investigate melt seasons changes in cirque glacier hydrology. J Hydrol 246:123–141

    Article  Google Scholar 

  129. Hodgkins R (2001) Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrol Processes 15:441–460

    Article  Google Scholar 

  130. Singh P, Kumar A, Kumar N, kishore N (2010) Hydro-meteorological correlations and relationships for estimating streamflow for Gangotri Glacier basin in Western Himalayas. Int J Water Resour Environ Eng 2(3):60–69

    Google Scholar 

  131. Bonanno R, Ronchi C, Cagnazzi B, Provenzale A (2012) Response of Alpine glaciers in north-western Italian Alps for different climate change scenarios. In: The climate of the Mediterranean region: understanding its evolution and effects on environment and societies. MedCLIVAR 2012 Conference, Madrid.

    Google Scholar 

  132. Gudmundsson G (1970) Short term variations of a glacier-fed river. Tellus 22:341–353

    Article  Google Scholar 

  133. Pasquini AI, Lecomte KL, Depetris PJ (2008) Climate change and recent water level variability in Patagonian proglacial lakes, Argentina. Glob Planet Change 63:290–298

    Article  Google Scholar 

  134. Pasquini AI, Depetris PJ (2011) Southern patagonia’s perito moreno glacier, Lake Argentino, and Santa Cruz River hydrological system: an overview. J Glaciol 405:48–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chinarro .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chinarro, D. (2014). Karst and Glacial Hydrology. In: System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica). Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-08858-7_3

Download citation

Publish with us

Policies and ethics