Generating Events for Dynamic Social Network Simulations

  • Pascal Held
  • Alexander Dockhorn
  • Rudolf Kruse
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 443)


Social Network Analysis in the last decade has gained remarkable attention. The current analysis focuses more and more on the dynamic behavior of them. The underlying structure from Social Networks, like facebook, or twitter, can change over time. Groups can be merged or single nodes can move from one group to another. But these phenomenas do not only occur in social networks but also in human brains. The research in neural spike trains also focuses on finding functional communities. These communities can change over time by switching the stimuli presented to the subject. In this paper we introduce a data generator to create such dynamic behavior, with effects in the interactions between nodes. We generate time stamps for events for one-to-one, one-to-many, and many-to-all relations. This data could be used to demonstrate the functionality of algorithms on such data, e.g. clustering or visualization algorithms. We demonstrated that the generated data fulfills common properties of social networks.


Social Network Random Graph Social Network Analysis Spike Train Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akoglu, L., Faloutsos, C.: Rtg: a recursive realistic graph generator using random typing. Data Mining and Knowledge Discovery 19(2), 194–209 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1) (June 2006)Google Scholar
  4. 4.
    Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Guare, J.: Six Degrees of Separation: A Play. Vintage Books, New York (1990)Google Scholar
  6. 6.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Held, P., Kruse, R.: Analysis and visualization of dynamic clusterings. In: 2013 46th Hawaii International Conference on System Sciences (HICSS), pp. 1385–1393. IEEE (2013)Google Scholar
  8. 8.
    Held, P., Moewes, C., Braune, C., Kruse, R., Sabel, B.A.: Advanced analysis of dynamic graphs in social and neural networks. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C., Verleysen, M. (eds.) Towards Advanced Data Analysis. STUDFUZZ, vol. 285, pp. 205–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  10. 10.
    Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Louis, S., Borgelt, C., Grün, S.: Generation and selection of surrogate methods for correlation analysis. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol. 7, pp. 359–382. Springer US (2010)Google Scholar
  12. 12.
    McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components: Patterns and a generator. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 524–532. ACM, New York (2008)Google Scholar
  13. 13.
    Nawrot, M., Aertsen, A., Rotter, S.: Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. Journal of Neuroscience Methods 94(1), 81–92 (1999)CrossRefGoogle Scholar
  14. 14.
    Shalizi, C., Camperi, M., Klinkner, K.: Discovering functional communities in dynamical networks. In: Airoldi, E.M., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 140–157. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Vreeswijk, C.: Stochastic models of spike trains. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol. 7, pp. 3–20. Springer US (2010)Google Scholar
  16. 16.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  17. 17.
    Yule, G.U.: On the association of attributes in statistics: with illustrations from the material of the childhood society, &c. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 194, 257–319 (1900)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Held
    • 1
  • Alexander Dockhorn
    • 1
  • Rudolf Kruse
    • 1
  1. 1.Department of Knowledge Processing and Language Engineering Faculty of Computer ScienceOtto von Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations