Argument graphs are a common way to model argumentative reasoning. For reasoning or computational purposes, such graphs may have to be encoded in a given logic. This paper aims at providing a systematic approach for this encoding. This approach relies upon a general, principle-based characterization of argumentation semantics.


Constraint Satisfaction Problem Dynamic Logic Abstract Argument Argumentation Framework Argument System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Delgrande, J.P., Schaub, T. (eds.) Proc. NMR 2004, pp. 59–64 (2004)Google Scholar
  3. 3.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 147–177 (2010)CrossRefGoogle Scholar
  4. 4.
    Amgoud, L., Devred, C.: Argumentation frameworks as constraint satisfaction problems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 110–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Walicki, M., Dyrkolbotn, S.: Finding kernels or solving SAT. Discrete Algorithms 10, 146–164 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dyrkolbotn, S.K.: The same, similar, or just completely different? Equivalence for argumentation in light of logic. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 96–110. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems under preferred semantics. Artificial Intelligence 207, 23–51 (2014)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer (2009)Google Scholar
  9. 9.
    Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer (2009)Google Scholar
  10. 10.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence 171(10), 675–700 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Besnard, P., Garcia, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.: Special issue: Tutorials on structured argumentation. Argument and Computation 5(1) (2014)Google Scholar
  12. 12.
    Arieli, O., Caminada, M.W.: A QBF-based formalization of abstract argumentation semantics. Journal of Applied Logic 11(2), 229–252 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argumentation. In: Baral, C., De Giacomo, G. (eds.) Proc. KR 2014. AAAI Press (2014)Google Scholar
  14. 14.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: A general schema for argumentation semantics. Artificial Intelligence 168(1), 162–210 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Implementing abstract argumentation — A survey. Technical Report DBAI-TR-2013-82, Technische Universität Wien, Fakultät für Informatik, Vienna, Austria (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philippe Besnard
    • 1
  • Sylvie Doutre
    • 1
  • Andreas Herzig
    • 1
  1. 1.IRIT-CNRSUniversity of ToulouseFrance

Personalised recommendations