Advertisement

Graph-Based Transfer Learning for Managing Brain Signals Variability in NIRS-Based BCIs

  • Sami Dalhoumi
  • Gérard Derosiere
  • Gérard Dray
  • Jacky Montmain
  • Stéphane Perrey
Part of the Communications in Computer and Information Science book series (CCIS, volume 443)

Abstract

One of the major limitations to the use of brain-computer interfaces (BCIs) based on near-infrared spectroscopy (NIRS) in realistic interaction settings is the long calibration time needed before every use in order to train a subject-specific classifier. One way to reduce this calibration time is to use data collected from other users or from previous recording sessions of the same user as a training set. However, brain signals are highly variable and using heterogeneous data to train a single classifier may dramatically deteriorate classification performance. This paper proposes a transfer learning framework in which we model brain signals variability in the feature space using a bipartite graph. The partitioning of this graph into sub-graphs allows creating homogeneous groups of NIRS data sharing similar spatial distributions of explanatory variables which will be used to train multiple prediction models that accurately transfer knowledge between data sets.

Keywords

Brain-computer interface (BCI) near-infrared spectroscopy (NIRS) brain signals variability transfer learning bipartite graph partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain Computer Interfaces, a Review. Sensors 12, 1211–1279 (2012)CrossRefGoogle Scholar
  2. 2.
    Coyle, S., Ward, T., Markham, C., McDarby, G.: On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiological Measurement 25, 815–822 (2004)CrossRefGoogle Scholar
  3. 3.
    Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Networks 22, 1320–1328 (2009)CrossRefGoogle Scholar
  4. 4.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces. Journal of Neural Engineering 4, R1–R13 (2007)Google Scholar
  5. 5.
    Tu, W., Sun, S.: A subject transfer framework for EEG classification. Neurocomputing 82, 109–116 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Guan, C., Li, H., Chin, Z.: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Letters 29, 1285–1294 (2008)CrossRefGoogle Scholar
  7. 7.
    Krauledat, M., Tangermann, M., Blankertz, B., Muller, K.R.: Towards Zero Training for Brain-Computer Interfacing. Plos One 3(8), e2967 (2008)Google Scholar
  8. 8.
    Lotte, F., Guan, C.: Learning from other subjects helps reducing brain-computer interface calibration time. In: International Conference on Audio Speech and Signal Processing (ICASSP), pp. 614–617 (2010)Google Scholar
  9. 9.
    Falzi, S., Grozea, C., Danoczy, M., Popescu, F., Blankertz, B., Muller, K.R.: Subject independent EEG-based BCI decoding. In: Neural Information Processing Systems Conference (NIPS), pp. 513–521 (2009)Google Scholar
  10. 10.
    Samek, W., Meinecke, F.C., Muller, K.R.: Transferring Subspaces Between Subjects in Brain-Computer Interfacing. IEEE Transactions on Biomedical Engineering 60(8), 2289–2298 (2013)CrossRefGoogle Scholar
  11. 11.
    Lu, S., Guan, C., Zhang, H.: Unsupervised Brain Computer Interface Based on Intersubject Information and Online Adaptation. IEEE Transactions on Neural Systems and Reabilitation Engineering 17(2), 135–145 (2009)CrossRefGoogle Scholar
  12. 12.
    Sato, H., Fushino, Y., Kiguchi, M., Katura, T., Maki, A., Yoro, T., Koizumi, H.: Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation. Journal of Biomedical Optics 10(4), 44001 (2005)CrossRefGoogle Scholar
  13. 13.
    Power, S.D., Kushki, A., Chau, T.: Intersession Consistency of Single-Trial Classification of the Prefrontal Response to Mental Arithmetic and the No-Control State by NIRS. Plos One 7(7), e37791 (2012)Google Scholar
  14. 14.
    Holper, L., Kobashi, N., Kiper, D., Scholkmann, F., Wolf, M., Eng, K.: Trial-to-trial variability differentiates motor imagery during observation between low versus high responders : A functional near-infrared spectroscopy study. Bihavioural Brain Research 229, 29–40 (2012)CrossRefGoogle Scholar
  15. 15.
    Abibullaev, B., An, J., Jin, S.H., Lee, S.H., Moon, J.I.: Minimizing Inter-Subject Variability in fNIRS-based Brain-Computer Interfaces via Multiple-Kernel Support Vector Learning. Medical Engineering and Physics, S1350-4533(13)00183-5 (2013)Google Scholar
  16. 16.
    Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  17. 17.
    Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite Graph Partitioning and Data Clustering. In: CIKM 2001, Atlanta, Georgia, USA (2001)Google Scholar
  18. 18.
    Dhillon, I.S.: Co-clustering documents and words using Bipartite Spectral Graph Partitioning. In: KDD, San Francisco, California, USA (2001)Google Scholar
  19. 19.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  20. 20.
    Pizzi, N.J., Pedrycz, W.: Aggregating multiple classification results using fuzzy integration and stochastic feature selection. International Journal of Approximate Reasoning 51(8), 883–894 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sami Dalhoumi
    • 1
  • Gérard Derosiere
    • 2
  • Gérard Dray
    • 1
  • Jacky Montmain
    • 1
  • Stéphane Perrey
    • 2
  1. 1.Laboratoire d’Informatique et d’Ingénierie de Production (LGI2P)Ecole des Mines d’Alès Parc Scientifique G. BesseNîmesFrance
  2. 2.Movement to Health (M2H)Montpellier 1-University, EuromovMontpellierFrance

Personalised recommendations