Advertisement

Abstract

Uncertain data due to imprecise measurements is commonly specified as bounded interval parameters in a constraint problem. For tractability reasons, existing approaches assume independence of the parameters. This assumption is safe, but can lead to large solution spaces, and a loss of the problem structure. In this paper we propose to combine the strengths of two frameworks to tackle parameter dependency effectively, namely constraint programming and regression analysis. Our methodology is an iterative process. The core intuitive idea is to account for data dependency by solving a set of constraint models such that each model uses data parameter instances that satisfy the dependency constraints. Then we apply a regression between the parameter instances and the corresponding solutions found to yield a possible relationship function. Our findings show that this methodology exploits the strengths of both paradigms effectively, and provides valuable insights to the decision maker by accounting for parameter dependencies.

Keywords

Data uncertainty Constraint Programming regression analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benhamou, F., Goualard, F.: Universally quantified interval constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Boukezzoula, R., Galichet, S., Bisserier, A.: A Midpoint Radius approach to regression with interval data. International Journal of Approximate Reasoning 52(9) (2011)Google Scholar
  3. 3.
    Brown, K., Miguel, I.: Uncertainty and Change. In: Handbook of Constraint Programming, ch. 21. Elsevier (2006)Google Scholar
  4. 4.
    Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K., Wallace, M.G.: ECLiPSe: An Introduction. Tech. Rep. IC-Parc-03-1, Imperial College London, London, UKGoogle Scholar
  5. 5.
    Chinneck, J.W., Ramadan, K.: Linear programming with interval coefficients. J. Operational Research Society 51(2), 209–220 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    De Raedt, L., Mannila, H.: O’Sullivan and Van Hentenryck P. organizers. Constraint Programming meets Machine Learning and Data Mining. Dagstuhl seminar (2011)Google Scholar
  7. 7.
    Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: A framework for decision problems under incomplete knowledge. In: Proc. of AAAI (1996)Google Scholar
  8. 8.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic Matrix Estimation: Existing Techniques and New Directions. In: Proceedings of ACM SIGCOMM 2002 (2002)Google Scholar
  9. 9.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  10. 10.
    Saad, A., Gervet, C., Abdennadher, S.: Constraint Reasoning with Uncertain Data using CDF-Intervals. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 292–306. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)Google Scholar
  12. 12.
    Yorke-Smith, N., Gervet, C.: Certainty Closure: Reliable Constraint Reasoning with Uncertain Data. ACM Transactions on Computational Logic 10(1) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carmen Gervet
    • 1
  • Sylvie Galichet
    • 1
  1. 1.LISTIC, Laboratoire d’Informatique, Systems, Traitement de l’Information et de la ConnaissanceUniversit de SavoieAnnecy-Le-Vieux CedexFrance

Personalised recommendations