Advertisement

Abstract

We find necessary and sufficient conditions for a ranking index defined on the set of triangular fuzzy numbers as a linear combination of its components to rank effectively. Then, based on this result, we characterize the class of ranking indices which generates orderings on triangular fuzzy numbers satisfying the basic requirements by Wang and Kerre in a slightly modified form.

Keywords

Fuzzy number Triangular fuzzy number Ranking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Computers and Mathematics with Applications 57, 413–419 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Asady, B., Zendehman, A.: Ranking fuzzy numbers by distance minimization. Applied Mathematical Modelling 31, 2589–2598 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ban, A.I., Coroianu, L.: Simplifying the search for effective ranking of fuzzy numbers. IEEE Transactions on Fuzzy Systems (in press), doi:10.1109/TFUZZ.2014.2312204Google Scholar
  4. 4.
    Chen, S.: Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems 17, 113–129 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, L.H., Lu, H.W.: An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers and Mathematics with Applications 41, 1589–1602 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets and Systems 54, 287–294 (1993)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chu, T.-C., Tsao, C.-T.: Ranking fuzzy numbers with an area between the centroid point and original point. Computers and Mathematics with Applications 43, 111–117 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Coroianu, L., Gagolewski, M., Grzegorzewski, P.: Nearest piecewise linear approximation of fuzzy numbers. Fuzzy Sets and Systems 233, 26–51 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Delgado, M., Vila, M.A., Voxman, W.: On a canonical representation of a fuzzy number. Fuzzy Sets and Systems 93, 125–135 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Detynicki, M., Yagger, R.R.: Ranking fuzzy numbers using α −weighted valuations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8, 573–592 (2001)CrossRefGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. International Journal of Systems Science 9, 613–626 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Heilpern, S.: The expected value of a fuzzy number. Fuzzy Sets and Systems 47, 81–86 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Liou, T.-S., Wang, M.-J.: Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems 50, 247–255 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Saeidifar, A.: Application of weighting functions to the ranking of fuzzy numbers. Computers and Mathematics with Applications 62, 2246–2258 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems 118, 375–385 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adrian I. Ban
    • 1
  • Lucian Coroianu
    • 1
  1. 1.Department of Mathematics and InformaticsUniversity of OradeaOradeaRomania

Personalised recommendations