Advertisement

Abstract

In this paper, the application of the fuzzy transforms of the zero degree (F 0-transform) and of the first degree (F 1-transform) to the image registration is demonstrated. The main idea is to use only one technique (F-transform generally) to solve various tasks of the image registration. The F 1-transform is used for an extraction of feature points in edge detection step. The correspondence between the feature points in two images is obtained by the image similarity algorithm based on the F 0-transform. Then, the shift vector for corresponding corners is computed, and by the image fusion algorithm, the final image is created.

Keywords

image registration feature detection edge detection image similarity image fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perfilieva, I.: Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems 157, 993–1023 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Perfilieva, I., De Baets, B.: Fuzzy Transform of Monotonous Functions with Applications to Image Processing. Information Sciences 180, 3304–3315 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Hurtik, P., Perfilieva, I.: Image compression methodology based on fuzzy transform. In: Herrero, Á., Snášel, V., Abraham, A., Zelinka, I., Baruque, B., Quintián, H., Calvo, J.L., Sedano, J., Corchado, E. (eds.) Int. Joint Conf. CISIS’12-ICEUTE’12-SOCO’12. AISC, vol. 189, pp. 525–532. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Hurtik, P., Perfilieva, I.: Image compression methodology based on fuzzy transform using block similarity. In: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013). Atlantis Press (2013)Google Scholar
  5. 5.
    Hurtik, P., Perfilieva, I.: Image Reduction/Enlargement Methods Based on the F-Transform, pp. 3–10. European Centre for Soft Computing, Asturias (2013)Google Scholar
  6. 6.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  7. 7.
    Perfilieva, I., Daňková, M.: Image fusion on the basis of fuzzy transforms. In: Proc. 8th Int. FLINS Conf., Madrid, pp. 471–476 (2008)Google Scholar
  8. 8.
    Vajgl, M., Perfilieva, I., Hod’kov, P.: Advanced F-Transform-Based Image Fusion. Advances in Fuzzy Systems  2012 (2012)Google Scholar
  9. 9.
    Perfilieva, I., Hodáková, P., Hurtík, P.: F1-transform edge detector inspired by Canny’s algorithm. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 230–239. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Perfilieva, I., Daňková, M., Bede, B.: Towards F-transform of a higher degree. Fuzzy Sets and Systems 180, 3–19 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60 (2004)Google Scholar
  12. 12.
    Brown, M., Lowe, D.: Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Petr Hurtík
    • 1
  • Irina Perfilieva
    • 1
  • Petra Hodáková
    • 1
  1. 1.Centre of Excellence IT4Innovations,Institute for Research and Applications of Fuzzy ModelingUniversity of OstravaOstrava 1Czech Republic

Personalised recommendations