Skip to main content

Pairwise Rational Kernels Obtained by Automaton Operations

  • Conference paper
Implementation and Application of Automata (CIAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8587))

Included in the following conference series:

Abstract

Pairwise Rational Kernels (PRKs) are the combination of pairwise kernels, which handle similarities between two pairs of entities, and rational kernels, which are based on finite-state transducer for manipulating sequence data. PRKs have been already used in bioinformatics problems, such as metabolic network prediction, to reduce computational costs in terms of storage and processing.

In this paper, we propose new Pairwise Rational Kernels based on automaton and transducer operations. In this case, we define new operations over pairs of automata to obtain new rational kernels. We develop experiments using these new PRKs to predict metabolic networks. As a result, we obtain better accuracy and execution times when we compare them with previous kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein–protein interactions. Bioinformatics 21(suppl. 1), i38–i46 (2005)

    Google Scholar 

  2. Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing entropy. Bioinformatics 20(suppl. 1), i326–i333 (2004)

    Google Scholar 

  3. Yamanishi, Y.: Supervised inference of metabolic networks from the integration of genomic data and chemical information. In: Elements of Computational Systems Biology, pp. 189–212. Wiley (2010)

    Google Scholar 

  4. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Google Scholar 

  5. O’Madadhain, J., Hutchins, J., Smyth, P.: Prediction and ranking algorithms for event-based network data. ACM SIGKDD Explorations Newsletter 7(2), 23–30 (2005)

    Article  Google Scholar 

  6. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  7. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press (2005)

    Google Scholar 

  8. Allauzen, C., Mohri, M., Riley, M.: Statistical modeling for unit selection in speech synthesis. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, ACL 2004. Association for Computational Linguistics, Stroudsburg (2004)

    Google Scholar 

  9. Albert, J., Kari, J.: Digital image compression. In: Handbook of weighted automata, EATCS Monographs on Theoretical Computer Science. Springer (2009)

    Google Scholar 

  10. Holmes, I.: Using guide trees to construct multiple-sequence evolutionary hmms. Bioinformatics 19, i147–i157 (2003)

    Google Scholar 

  11. Westesson, O., Lunter, G., Paten, B., Holmes, I.: Phylogenetic automata, pruning, and multiple alignment. arXiv preprint arXiv:1103.4347 (2011)

    Google Scholar 

  12. Bradley, R.K., Holmes, I.: Transducers: An emerging probabilistic framework for modeling indels on trees. Bioinformatics 23(23), 3258–3262 (2007)

    Article  Google Scholar 

  13. Cortes, C., Mohri, M.: Learning with weighted transducers. In: Proceedings of the 2009 Conference on Finite-State Methods and Natural Language Processing: Post-Proceedings of the 7th International Workshop FSMNLP 2008, pp. 14–22. IOS Press, Amsterdam (2009)

    Google Scholar 

  14. Roche-Lima, A., Domaratzki, M., Fristensky, B.: Metabolic network prediction through pairwise rational kernels. Submitted BMC Bioinformatics (April 2014)

    Google Scholar 

  15. Kosiol, C., Holmes, I., Goldman, N.: An empirical codon model for protein sequence evolution. Molecular Biology and Evolution 24(7), 1464–1479 (2007)

    Article  Google Scholar 

  16. Roche-Lima, A., Oncina, J.: Bioinformatics applied to genetic study of rumen microorganism. In: 2nd Conference of IT in Agriculture Scienc, Havana, Cuba (November 2007)

    Google Scholar 

  17. Allauzen, C., Mohri, M., Talwalkar, A.: Sequence kernels for predicting protein essentiality. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 9–16. ACM, New York (2008)

    Google Scholar 

  18. Zien, A., Ratsch, G., Mika, S., Schalkopf, B., Lengauer, T., Macller, K.R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics (Oxford, England) 16(9), 799–807 (2000)

    Article  Google Scholar 

  19. Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M., Freund, Y., Leslie, C.: Profile-based string kernels for remote homology detection and motif extraction. Journal of Bioinformatics and Computational Biology 3(3), 527 (2005)

    Article  Google Scholar 

  20. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels for discriminative protein classification. Bioinformatics (Oxford, England) 20(4), 467–476 (2004)

    Article  Google Scholar 

  21. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSCCRL-99-10. University of California at Santa Cruz. (1999)

    Google Scholar 

  22. Takimoto, E., Warmuth, M.: Path kernels and multiplicative updates. Journal of Machine Learning Research 4(5), 773–818 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. J. Mach. Learn. Res. 5, 1035–1062 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  25. Mohri, M.: Weighted automata algorithms. In: Handbook of weighted automata, pp. 213–254. Springer (2009)

    Google Scholar 

  26. Lee, K.H., Lee, D., Lee, K., Kim, D.W.: Possibilistic support vector machines. Pattern Recognition 38(8), 1325–1327 (2005)

    Article  MATH  Google Scholar 

  27. Moreau, Y.: Kernel methods for genomic data fusion. In: Sixth International Workshop on Machine Learning in Systems Biology (MLSB 2012), Basel, Switzerland (September 2012)

    Google Scholar 

  28. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. The Journal of Machine Learning Research 2, 419–444 (2002)

    MATH  Google Scholar 

  29. Brunner, C., Fischer, A., Luig, K., Thies, T.: Pairwise support vector machines and their application to large scale problems. Journal of Machine Learning Research 13, 2279–2292 (2012)

    MATH  MathSciNet  Google Scholar 

  30. Kashima, H., Oyama, S., Yamanishi, Y., Tsuda, K.: Cartesian kernel: An efficient alternative to the pairwise kernel. IEICE TRANSACTIONS on Information and Systems 93(10), 2672–2679 (2010)

    Article  Google Scholar 

  31. Kari, L.: On language equations with invertible operations. Theoretical Computer Science 132(1), 129–150 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Research 36(suppl. 1), D480–D484 (2008)

    Google Scholar 

  33. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFST: A general and efficient weighted finite-state transducer library. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Allauzen, C., Mohri, M.: Openkernel library (2012)

    Google Scholar 

  35. Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.R.: Simple sequence-based kernels do not predict protein–protein interactions. Bioinformatics 26(20), 2610–2614 (2010)

    Article  Google Scholar 

  36. Yamanishi, Y., Vert, J.P., Kanehisa, M.: Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics 21(suppl. 1), i468–i477 (2005)

    Google Scholar 

  37. Gomez, S.M., Noble, W.S., Rzhetsky, A.: Learning to predict protein–protein interactions from protein sequences. Bioinformatics 19(15), 1875–1881 (2003)

    Article  Google Scholar 

  38. Gribskov, M., Robinson, N.L.: Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Computers & Chemistry 20(1), 25–33 (1996)

    Article  Google Scholar 

  39. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)

    Article  Google Scholar 

  40. Bostanci, B., Bostanci, E.: An evaluation of classification algorithms using McNemar’s test. In: Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). AISC, vol. 201, pp. 15–26. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Roche-Lima, A., Domaratzki, M., Fristensky, B. (2014). Pairwise Rational Kernels Obtained by Automaton Operations. In: Holzer, M., Kutrib, M. (eds) Implementation and Application of Automata. CIAA 2014. Lecture Notes in Computer Science, vol 8587. Springer, Cham. https://doi.org/10.1007/978-3-319-08846-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08846-4_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08845-7

  • Online ISBN: 978-3-319-08846-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics