Skip to main content

Introduction

  • Chapter
  • First Online:
  • 728 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 99))

Abstract

The study of optimal control problems and variational problems defined on infinite intervals and on sufficiently large intervals has been a rapidly growing area of research [3, 4, 8, 11–13, 18, 22, 24–27, 32, 34, 39–42, 44, 50, 51, 56, 70] which has various applications in engineering [1, 29, 76], in models of economic growth [2, 14–17, 21, 23, 28, 33, 38, 43, 46–48, 56], in infinite discrete models of solid-state physics related to dislocations in one-dimensional crystals [7, 49], and in the theory of thermodynamical equilibrium for materials [20, 30, 35–37].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, B. D. O., & Moore, J. B. (1971). Linear optimal control. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  2. Arkin, V. I., & Evstigneev, I. V. (1987). Stochastic models of control and economic dynamics. London: Academic.

    Google Scholar 

  3. Aseev, S. M., & Kryazhimskiy, A. V. (2004). The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM Journal on Control and Optimization, 43, 1094–1119.

    Article  MATH  MathSciNet  Google Scholar 

  4. Aseev, S. M., & Veliov, V. M. (2012). Maximum principle for infinite-horizon optimal control problems with dominating discount. Dynamics of Continuous, Discrete and Impulsive Systems Series B, 19, 43–63.

    MATH  MathSciNet  Google Scholar 

  5. Atsumi, H. (1965). Neoclassical growth and the efficient program of capital accumulation. Review of Economic Studies, 32, 127–136.

    Article  Google Scholar 

  6. Aubry, S., & Le Daeron, P. Y. (1983). The discrete Frenkel-Kontorova model and its extensions I. Physica D, 8, 381–422.

    Article  MATH  MathSciNet  Google Scholar 

  7. Baumeister, J., Leitao, A., & Silva, G. N. (2007). On the value function for nonautonomous optimal control problem with infinite horizon. Systems and Control Letters, 56, 188–196.

    Article  MATH  MathSciNet  Google Scholar 

  8. Blot, J. (2009). Infinite-horizon Pontryagin principles without invertibility. Journal of Nonlinear and Convex Analysis, 10, 177–189.

    MathSciNet  Google Scholar 

  9. Blot, J., & Hayek, N. (2000). Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM: Control, Optimisation and Calculus of Variations, 5, 279–292.

    Article  MATH  MathSciNet  Google Scholar 

  10. Brock, W. A. (1970). On existence of weakly maximal programmes in a multi-sector economy. Review of Economic Studies, 37, 275–280.

    Article  MATH  Google Scholar 

  11. Carlson, D. A., Haurie, A., & Leizarowitz, A. (1991). Infinite horizon optimal control. Berlin: Springer.

    Book  MATH  Google Scholar 

  12. Carlson, D. A., Jabrane, A., & Haurie, A. (1987). Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals. SIAM Journal on Control and Optimizaton, 25, 517–1541.

    MathSciNet  Google Scholar 

  13. Cartigny, P., & Michel, P. (2003). On a sufficient transversality condition for infinite horizon optimal control problems. Automatica Journal IFAC, 39, 1007–1010.

    Article  MATH  MathSciNet  Google Scholar 

  14. Coleman, B. D., Marcus, M., & Mizel, V. J. (1992). On the thermodynamics of periodic phases. Archive for Rational Mechanics and Analysis, 117, 321–347.

    Article  MATH  MathSciNet  Google Scholar 

  15. Evstigneev, I. V., & Flam, S. D. (1998). Rapid growth paths in multivalued dynamical systems generated by homogeneous convex stochastic operators. Set-Valued Analysis, 6, 61–81.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gaitsgory, V., Rossomakhine, S., & Thatcher, N. (2012). Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dynamics of Continuous, Discrete and Impulsive Systems Series B, 19, 65–92.

    MATH  MathSciNet  Google Scholar 

  17. Gale, D. (1967). On optimal development in a multi-sector economy. Review of Economic Studies, 34, 1–18.

    Article  MathSciNet  Google Scholar 

  18. Guo, X., & Hernandez-Lerma, O. (2005). Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates. Bernoulli, 11, 1009–1029.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolokoltsov, V., &Yang, W. (2012). The turnpike theorems for Markov games. Dynamic Games and Applications, 2, 294–312.

    Article  MATH  MathSciNet  Google Scholar 

  20. Leizarowitz, A. (1985). Infinite horizon autonomous systems with unbounded cost. Applied Mathematics and Optimization, 13, 19–43.

    Article  MATH  MathSciNet  Google Scholar 

  21. Leizarowitz, A. (1986). Tracking nonperiodic trajectories with the overtaking criterion. Applied Mathematics and Optimization, 14, 155–171.

    Article  MATH  MathSciNet  Google Scholar 

  22. Leizarowitz, A., & Mizel, V. J. (1989). One dimensional infinite horizon variational problems arising in continuum mechanics. Archive for Rational Mechanics and Analysis, 106, 161–194.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lykina, V., Pickenhain, S., & Wagner, M. (2008). Different interpretations of the improper integral objective in an infinite horizon control problem. Journal of Mathematical Analysis and Applications, 340, 498–510.

    Article  MATH  MathSciNet  Google Scholar 

  24. Makarov, V. L., & Rubinov, A. M. (1977) Mathematical theory of economic dynamics and equilibria. New York: Springer.

    Book  MATH  Google Scholar 

  25. Malinowska, A. B., Martins, N., & Torres, D. F. M. (2011). Transversality conditions for infinite horizon variational problems on time scales. Optimization Letters, 5, 41–53.

    Article  MATH  MathSciNet  Google Scholar 

  26. Marcus, M., & Zaslavski, A. J. (1999). On a class of second order variational problems with constraints. Israel Journal of Mathematics, 111, 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  27. Marcus, M., & Zaslavski, A. J. (2002). The structure and limiting behavior of locally optimal minimizers. Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, 19, 343–370.

    Article  MATH  MathSciNet  Google Scholar 

  28. McKenzie, L. W. (1976). Turnpike theory. Econometrica, 44, 841–866.

    Article  MATH  MathSciNet  Google Scholar 

  29. Mordukhovich, B. S. (1990). Minimax design for a class of distributed parameter systems. Automation and Remote Control, 50, 1333–1340.

    MathSciNet  Google Scholar 

  30. Moser, J. (1986). Minimal solutions of variational problems on a torus. Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, 3, 229–272.

    MATH  Google Scholar 

  31. Ocana Anaya, E., Cartigny, P., & Loisel, P. (2009). Singular infinite horizon calculus of variations. Applications to fisheries management. Journal of Nonlinear and Convex Analysis, 10, 157–176.

    Google Scholar 

  32. Pickenhain, S., Lykina, V., & Wagner, M. (2008). On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control and Cybernetics, 37, 451–468.

    MATH  MathSciNet  Google Scholar 

  33. Rubinov, A. M. (1984). Economic dynamics. Journal of Soviet Mathematics, 26, 1975–2012.

    Article  MATH  Google Scholar 

  34. Samuelson, P. A. (1965). A catenary turnpike theorem involving consumption and the golden rule. American Economic Review, 55, 486–496.

    Google Scholar 

  35. von Weizsacker, C. C. (1965). Existence of optimal programs of accumulation for an infinite horizon. Review of Economic Studies, 32, 85–104.

    Article  Google Scholar 

  36. Zaslavski, A. J. (1987). Ground states in Frenkel-Kontorova model. Mathematics of the USSR-Izvestiya, 29, 323–354.

    Article  Google Scholar 

  37. Zaslavski, A. J. (1995). Optimal programs on infinite horizon 1. SIAM Journal on Control and Optimization, 33, 1643–1660.

    Article  MATH  MathSciNet  Google Scholar 

  38. Zaslavski, A. J. (1995). Optimal programs on infinite horizon 2. SIAM Journal on Control and Optimization, 33, 1661–1686.

    Article  MATH  MathSciNet  Google Scholar 

  39. Zaslavski, A. J. (1998). Turnpike theorem for convex infinite dimensional discrete-time control systems. Convex Analysis, 5, 237–248.

    MATH  MathSciNet  Google Scholar 

  40. Zaslavski, A. J. (1999). Turnpike property for dynamic discrete time zero-sum games. Abstract and Applied Analysis, 4, 21–48.

    Article  MATH  MathSciNet  Google Scholar 

  41. Zaslavski, A. J. (2000). Turnpike theorem for nonautonomous infinite dimensional discrete-time control systems. Optimization, 48, 69–92.

    Article  MATH  MathSciNet  Google Scholar 

  42. Zaslavski, A. J. (2006). Turnpike properties in the calculus of variations and optimal control. New York: Springer.

    MATH  Google Scholar 

  43. Zaslavski, A. J. (2012). A generic turnpike result for a class of discrete-time optimal control systems. Dynamics of Continuous, Discrete and Impulsive Systems Series B, 19, 225–265.

    MATH  MathSciNet  Google Scholar 

  44. Zaslavski, A. J. (2013) Structure of solutions of variational problems. New York: SpringerBriefs in Optimization.

    Book  MATH  Google Scholar 

  45. Zaslavski, A. J., Leizarowitz, A. (1997). Optimal solutions of linear control systems with nonperiodic integrands. Mathematical Methods of Operations Research, 22, 726–746.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaslavski, A.J. (2014). Introduction. In: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Optimization and Its Applications, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-08828-0_1

Download citation

Publish with us

Policies and ethics