Skip to main content

Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-up Process

  • Chapter
  • First Online:
Book cover Automation, Communication and Cybernetics in Science and Engineering 2013/2014

Abstract

Within the ramp-up phase of highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands and therefore an increasing number of ramp-up processes these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed within the Cluster of Excellence “Integrative production technology for high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities according to human cognition. This approach combines the advantages of automation with the flexibility of humans. In this paper the main principles of the system’s core component – the cognitive control unit – are presented to underline its advantages with respect to traditional assembly systems. Based on this, the actual innovation of this paper is the development of key performance indicators. These refer to the ramp-up process as a main objective of such a system is to minimize the planning effort during ramp-up. The KPIs are also designed to show the impact on the main idea of the Cluster of Excellence in resolving the so-called Polylemma of Production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer, M., C. Schlick, D. Ewert, D. Behnen, S. Kuz, B. Odenthal, and B. Kausch. 2011. Automation of robotic assembly processes on the basis of an architecture of human cognition. Production Engineering Research and Development 5 (4): 423–431. (ISSN 0944-6524)

    Google Scholar 

  2. Pufall, Andreas, Jan C. Fransoo, and A. G. de Kok. 2007. What determines product ramp-up performance? A review of characteristics based on a case study at Nokia mobile phones. BETA publicaties. Working paper no. 228 [Beta, Research School for Operations Management and Logistics], Technische Universiteit Eindhoven.

    Google Scholar 

  3. Winkler, Helge, Michael Heins, and Peter Nyhuis. 2007. A controlling system based on cause-effect relationships for the ramp-up of production systems. Production Engineering – Research and Development 1 (1): 103–111.

    Article  Google Scholar 

  4. Schuh, Günther, Wolfgang Stölzle, and Frank Straube. 2008. Grundlagen des Anlaufmanagements: Entwicklungen und Trends, Definitionen und Begriffe, Integriertes Anlaufmanagementmodell. In Anlaufmanagement in der Automobilindustrie erfolgreich umsetzen, ed. Günther Schuh, Wolfgang Stölzle, and Frank Straube. 1–6. Berlin: VDI-Buch, Springer.

    Google Scholar 

  5. Ball, P. D., S. Roberts, A. Natalicchio, and C. Scorzafave. 2011. Modelling production ramp-up of engineering products. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225 (6): 959–971.

    Article  Google Scholar 

  6. Bischoff, Raphael. 2007. Anlaufmanagement: Schnittstelle zwischen Projekt und Serie. Konstanzer Managementschriften, 2 vols. Konstanz: Hochschule Konstanz - Technik, Wirtschaft und Gestaltung.

    Google Scholar 

  7. Fitzek, Daniel. 2006. Anlaufmanagement in Netzwerken: Grundlagen, Erfolgsfaktoren und Gestaltungsempfehlungen für die Automobilindustrie. Bern: Haupt.

    Google Scholar 

  8. Möller, Klaus. 2005. Anlaufkosten in der Serienfertigung – Management und Controlling im Rahmen eines Lebenszykluskonzepts. In Synchronisation von Produktentwicklung und Produktionsprozess: Produktreife - Produktneuanläufe - Produktionsauslauf, ed. H. Wildemann, 137–171. München: TCW.

    Google Scholar 

  9. Risse, Jörg. 2003. Time-to-market-management in der Automobilindustrie: Ein Gestaltungsrahmen für ein logistikorientiertes Anlaufmanagement. Bern: Haupt.

    Google Scholar 

  10. Schmitt, Robert, and Patrick Beaujean. 2007. Selbstoptimierende Produktionssysteme: Eine neue Dimension von Flexibilität, Transparenz und Qualität. Zeitschrift für Wirtschaftlichen Fabrikbetrieb 102 (9): 520–524.

    Google Scholar 

  11. Hauck, Eckart. 2011. Ein kognitives Interaktionssystem zur Ansteuerung einer Montagezelle. VDI Reihe 10, 812 vols. Düsseldorf: VDI.

    Google Scholar 

  12. Klocke, Fritz. 2009. Production technology in high-wage countries – From ideas of today to products of tomorrow. In Industrial engineering and ergonomics 1, ed. C. Schlick and H. Luczak, 13–30. Berlin/Heidelberg: Springer.

    Google Scholar 

  13. Brecher, Christian, Fritz Klocke, Robert Schmitt, and Günther Schuh. 2007. Excellence in Production: Festschrift für Univ.-Prof. Dr.-Ing. Dipl.-Wirt. Ing. Dr. techn. h.c. Dr. oec. h.c. Walter Eversheim. Aachen: Apprimus.

    Google Scholar 

  14. Ewert, Daniel, Sebastian Thelen, Ralph Kunze, Marcel Mayer, Daniel Schilberg, and Sabina Jeschke. 2010. A graph based hybrid approach of offline pre-planning and online re-planning for efficient assembly under realtime constraints. In Intelligent robotics and applications, ed. Honghai Liu, Han Ding, Zhenhua Xiong, and Xiangyang Zhu. Lecture Notes in Computer Science. 6425 vols., 44–55. Berlin/Heidelberg: Springer.

    Google Scholar 

  15. Hauck, E., A. Gramatke, and K. Henning. 2009. A software architecture for cognitive technical systems for an assembly task in a production environment. In Automation and control – Theory and practice, ed. A. D. Rodić, 13–28. Rijeka: Intech.

    Google Scholar 

  16. Büscher, Christian, Marcel Mayer, Daniel Schilberg, and Sabina Jeschke. 2011. Artificial cognition in autonomous assembly planning systems. In Intelligent robotics and applications – Fourth international conference, ICIRA 2011, ed. Sabina Jeschke, Honghai Honghai, and Daniel Schilberg. Lecture Notes in Computer Science, 7102 vols., 168–178. Berlin: Springer.

    Google Scholar 

  17. Kempf, Tobias, Werner Herfs, and Christian Brecher. 2009. Soar-based Sequence Control for a Flexible Assembly Cell. In ETFA 2009. Proceedings of the 14th IEEE International Conference on Emerging Technologies & Factory Automation, 488–496. Piscataway: IEEE Press.

    Google Scholar 

  18. Louly, Mohamed-Aly, Alexandre Dolgui, and Faicel Hnaien. 2008. Supply planning for single-level assembly system with stochastic component delivery times and service-level constraint. International Journal of Production Economics 115 (1): 236–247.

    Article  Google Scholar 

  19. Chauhan, Satyaveer S., Alexandre Dolgui, and Jean-Marie Proth. 2009. A continuous model for supply planning of assembly systems with stochastic component procurement times. International Journal of Production Economics 120 (2): 411–417 (Special Issue on Introduction to Design and Analysis of Production Systems).

    Article  Google Scholar 

  20. Hoffmann, Jörg. 2001. FF: The fast-forward planning system. AI Magazine 22 (3): 57–62.

    Google Scholar 

  21. Castellini, Claudio, Enrico Giunchiglia, and Armando Tacchella. 2001. Improvements to SAT-based Conformant Planning. Proceedings of the 6th European Conference on Planning (ECP-01) 1:241–252.

    Google Scholar 

  22. Hoffmann, Jörg, and Ronen Brafman. 2005. Contingent Planning via Heuristic Forward Search with Implicit Belief States. Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS), 71–80.

    Google Scholar 

  23. Kaufman, S. G., R. H. Wilson, R. E. Jones, T. L. Calton, and A. L. Ames. 1996. Automated planning and programming of assembly of fully 3D mechanisms. Technical report. SAND96-0433.

    Google Scholar 

  24. Thomas, Ulrike. 2008. Automatisierte Programmierung von Robotern für Montageaufgaben, Fortschritte in der Robotik. 13 vols. Aachen: Shaker.

    Google Scholar 

  25. Zaeh, Michael F., and Mathey Wiesbeck. 2008. A model for adaptively generating assembly instructions using state-based graphs. In Manufacturing systems and technologies for the new frontier, ed. Mamoru Mitsuishi, Kanji Ueda, and Fumihiko Kimura, 195–198. London: Springer.

    Google Scholar 

  26. Mayer, Marcel, Barbara Odenthal, Marco Faber, Wolfgang Kabuß, Bernhard Kausch, and Christopher Schlick. 2009. Simulation of Human Cognition in Self-Optimizing Assembly Systems. Proceedings of the IEA2009-17th World Congress on Ergonomics, 1–7.

    Google Scholar 

  27. Homem de Mello, L. S., and A. C. Sanderson. 1991. Representations of mechanical assembly sequences. IEEE Transactions on Robotics and Automation 7 (2): 211–227.

    Article  Google Scholar 

  28. Chen, Ruey-Shun, Kun-Yung Lu, and Pei-Hao Tai. 2004. Optimizing assembly planning through a three-stage integrated approach. International Journal of Production Economics 88 (3): 243–256.

    Article  Google Scholar 

  29. Hart, Peter, Nils Nilsson, and Bertram Raphael. 2007. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (2): 100–107.

    Article  Google Scholar 

  30. Langley, Pat, John E. Laird, and Seth Rogers. 2009. Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10 (2): 141–160.

    Google Scholar 

  31. Schilberg, Daniel. 2010. Architektur eines Datenintegrators zur durchgängigen Kopplung von verteilten numerischen Simulationen. Dissertation, RWTH Aachen.

    Google Scholar 

  32. Gerevini, Alfonso E., Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis Dimopoulos. 2009. Deterministic planning in the 5th international planning competition: PDDL3 and experimental evaluation of the planners. Artificial Intelligence 173:619–668.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation DFG for sup-porting the research on cognitive technical systems including an economic analysis within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Büscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Büscher, C., Hauck, E., Schilberg, D., Jeschke, S. (2014). Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-up Process. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds) Automation, Communication and Cybernetics in Science and Engineering 2013/2014. Springer, Cham. https://doi.org/10.1007/978-3-319-08816-7_43

Download citation

Publish with us

Policies and ethics