Skip to main content

Interspecific Competition in Arabidopsis thaliana: A Knowledge Gap Is Starting to Close

  • Chapter
  • First Online:

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

The model species Arabidopsis thaliana offers an interesting ecological background as a non-mycorrhizal annual species and it can be analysed by outstanding molecular tools. However, its interspecific interactions are scarcely analysed, especially its competitive effect, which is found to be strong despite the species’ small size. A. thaliana’s competitive response has received more attention during the last few years. Mechanisms were found to be multi-faceted and to involve resource competition for shifting limiting resources, impacts of environmental factors including environmental stress, perception of neighbours as well as responses to allelopathy and neighbour-associated mycorrhiza. Most mechanisms underlying A. thaliana interspecific interactions still require clarification and offer research perspectives both for plant molecular biology and plant ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarssen LW, Schamp B, Pither J (2006) Why are there so many small plants? Implications for species coexistence. J Ecol 94:569–580

    Article  Google Scholar 

  • Abhilasha D, Quintana N, Vivanco JM, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J Ecol 96:933–1001

    Article  Google Scholar 

  • Al-Shehbaz IA, O’Kane SL Jr (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). Arabidopsis Book 1:e0001, American Society of Plant Biologists

    Article  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796

    Article  Google Scholar 

  • Attard A, Gourgues M, Callemeyn-Torre N, Keller H (2010) The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol 187:449–460

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, De-la-Peña C, Lei Z, Manter DK, Chaparro JM, Guimarães RL, Sumner LW, Vivanco JM (2012) Root secreted metabolites and proteins are involved in the early events of plant-plant recognition prior to competition. PLoS One 7:e46640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bauer S (2010) Experimentell-ökologische Untersuchungen zur Bedeutung der Aluminiumtoxizität für die Konkurrenzkraft von Pflanzenarten aus Sandökosystemen. Bachelor thesis, University of Regensburg

    Google Scholar 

  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Biedrzycki ML, Venkatachalam L, Bais HP (2011) Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition. Plant Signal Behav 6:1515–1524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bonser SP, Ladd B (2011) The evolution of competitive strategies in annual plants. Plant Ecol 212:1441–1449

    Article  Google Scholar 

  • Bossdorf O, Shuja Z, Banta JA (2009) Genotype and maternal environment affect belowground interactions between Arabidopsis thaliana and its competitors. OIKOS 118:1541–1551

    Article  Google Scholar 

  • Brachi B, Aimé C, Glorieux C, Roux F (2012) Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection. PLoS One 7:e32069

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Theemat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting microbiota. Nature 488:91–95

    Article  PubMed  CAS  Google Scholar 

  • Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caffaro MM, Vivanco JM, Gutierrez-Boem FH, Rubio G (2011) The effect of root exudates on root architecture in Arabidopsis thaliana. Plant Growth Regul 64:241–249

    Article  CAS  Google Scholar 

  • Caffaro MM, Vivanco JM, Botto J, Rubio G (2013) Root architecture of Arabidopsis is affected by competition with neighbouring plants. Plant Growth Regul 70:141–147

    Article  CAS  Google Scholar 

  • Cheng Z, Woody ZO, Glick RB, McConkey JB (2010) Characterization of plant-bacterial interactions using proteomic approaches. Curr Proteomics 7:244–257

    Article  CAS  Google Scholar 

  • Fitter AH, Williamson L, Linkohr B, Leyser O (2002) Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc R Soc Lond 269:2017–2022

    Article  CAS  Google Scholar 

  • Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DE (1996) Competitive ability: definitions, contingency and correlated traits. Philos Trans R Soc Lond B 351:1377–1385

    Article  Google Scholar 

  • Goldberg DE, Fleetwood L (1987) Competitive effect and response in four annual plants. J Ecol 75:1131–1143

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (2007) Comparative plant biology—a functional approach to common British species. Castlepoint, Colvend

    Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    Article  PubMed  CAS  Google Scholar 

  • Hell C (2014) Differenzierung hydrologischer Nischen bei Vertretern der Familie der Brassicaceen. Exam thesis, University of Regensburg

    Google Scholar 

  • Hovick SM, Gümüşer ED, Whitney KD (2012) Community dominance patterns, not colonizer genetic diversity, drive colonization success in a test using grassland species. Plant Ecol 213:1365–1380

    Article  Google Scholar 

  • Kav NN, Srivastava S, Yajima W, Sharma N (2007) Application of proteomics to investigate plant-microbe interactions. Curr Proteomics 4:28–43

    Article  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18

    Article  PubMed  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lau JA, Shaw RG, Reich PB, Tiffin P (2010) Species interactions in a changing environment: elevated CO2 alters the ecological and potential evolutionary consequences of competition. Evol Ecol Res 12:435–455

    Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Macel M, Van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10:583–593

    Article  PubMed  CAS  Google Scholar 

  • Markham JH, Chanway CP (1996) Measuring plant neighbour effects. Funct Ecol 10:548–549

    Google Scholar 

  • Masclaux F, Bruessow F, Schweizer F, Gouhier-Darimont C, Keller L, Reymond P (2012) Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways. BMC Plant Biol 12:227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCullum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Müller B, Bartelheimer M (2013) Interspecific competition in Arabidopsis thaliana: root hairs are important for competitive effect, but not for competitive response. Plant Soil 371:167–177

    Article  Google Scholar 

  • Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ulmer, Stuttgart

    Google Scholar 

  • Pedersen HA, Kudsk P, Fiehn O, Fomsgaard IS (2013) The response of Arabidopsis to co-cultivation with clover investigating plant-plant interactions with metabolomics. In: Beck JJ, Coats RJ, Duke SO, Koivunen ME (eds) Pest management with natural products. American Chemical Society, Washington, DC, pp 189–201

    Chapter  Google Scholar 

  • Peškan‐Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  Google Scholar 

  • Pott R (1995) Die Pflanzengesellschaften Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Qin B, Lau JA, Kopshever J, Callaway RM, McGray H, Perry LG, Weir TL, Paschke MW, Hierro JL, Yoder J, Vivanco JM, Strauss S (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biol Invasions 9:897–907

    Article  Google Scholar 

  • Ramadan A, Muroi A, Arimura G-i (2011) Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J Plant Interact 6:155–158

    Article  CAS  Google Scholar 

  • Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemicals in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918

    Article  PubMed  CAS  Google Scholar 

  • Schmid C, Bauer S, Müller B, Bartelheimer M (2013) Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress. Front Plant Sci 4:296

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807

    Article  PubMed  CAS  Google Scholar 

  • Stein RJ, Waters BM (2012) Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J Exp Bot 63:1039–1055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Storf J (2014) Die Rolle des hydrotropischen Wurzelwachstums für die Konkurrenzfähigkeit von Arabidopsis thaliana. Exam thesis, University of Regensburg

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tomita-Yokotani K, Kato T, Masud Parvez M, Mori Y, Goto N, Hasegawa K (2003) Approach of allelopathy study with Arabidopsis thaliana (L.) Hevnh. and Neurospora crassa. Weed Biol Manage 3:93–97

    Article  Google Scholar 

  • Tosti G, Thorup-Kristensen K (2010) Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes. J Plant Ecol 3:191–199

    Article  Google Scholar 

  • Tutin G, Heywood VH, Burges NA, Valentine DH, Moore DM (1993) Flora Europaea. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CMJ, Bonfante P, van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937

    PubMed  Google Scholar 

  • Weigelt A, Schumacher J, Walther T, Bartelheimer M, Steinlein T, Beyschlag W (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95:53–64

    Article  Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Bartelheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartelheimer, M., Schmid, C., Storf, J., Hell, K., Bauer, S. (2015). Interspecific Competition in Arabidopsis thaliana: A Knowledge Gap Is Starting to Close. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_12

Download citation

Publish with us

Policies and ethics