Skip to main content

Perspectives of UTBB FD SOI MOSFETs for Analog and RF Applications

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Ultra-thin body and buried oxide (UTBB) fully depleted (FD) silicon-on-insulator (SOI) MOSFETs are widely recognized as a promising candidate for 20 nm technology node and beyond, due to outstanding electrostatic control of short channel effects (SCE). Introduction of a highly-doped layer underneath thin buried oxide (BOX), so called ground-plane (GP), targets suppression of detrimental parasitic substrate coupling and opens multi-threshold voltage (V Th ) and dynamic-V Th opportunities within the same process as well as the use of back-gate control schemes [1, 2]. Electrostatics, scalability and variability issues in UTBB MOSFETs as well as their perspectives for low power digital applications are widely discussed in the literature [15]. At the same time assessment of UTBB FD SOI for analog and RF applications received less attention. This chapter will discuss Figures of Merit (FoM) of UTBB MOSFETs of interest for further analog/RF applications summarizing our original research over the last years [615]. Device analog/RF performance is assessed through the key parameters such as the transconductance, g m , the output conductance, g d , the intrinsic gain, A v and the cut-off frequencies, f T and f max. Particular attention is paid to (1) a wide-frequency band assessment, the only approach that allows fair performance prediction for analog/RF applications; (2) the effect of parasitic elements, whose impact on the device performance increases enormously in deeply downscaled devices, in which they can even dominate device performance. Whenever possible, we will compare FoM achievable in UTBB FD SOI devices with those reported for other advanced devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenouillet-Beranger, C., et al.: Efficient multi-VT FD SOI technology with UTBOX for low power circuit design. In: Proceedings of the IEEE Symposium on VLSI Technology, pp. 65–66 (2010)

    Google Scholar 

  2. Andrieu, F., et al.: Low leakage and low variability ultra-thin body and buried oxide (UT2B) SOI technology for 20 nm low power CMOS and beyond. In: Proceedings of the IEEE Symposium on VLSI technology, pp. 57–58 (2010)

    Google Scholar 

  3. Fenouillet-Beranger, C., et al.: Impact of a 10 nm ultra-thin BOX (UTBOX) and ground plane on FD SOI devices for 32 nm node and below. Solid-State Electron. 54(9), 849–854 (2010)

    Article  Google Scholar 

  4. Monfray, S., et al.: Thin-film devices for low power applications. Solid-State Electron. 54(2), 90–96 (2010)

    Article  Google Scholar 

  5. Burignat, S., et al.: Substrate impact on threshold voltage and subthreshold slope of sub-32 nm ultra thin SOI MOSFETs with thin buried oxide and undoped channel. Solid-State Electron. 54(2), 213–219 (2010)

    Article  Google Scholar 

  6. Kilchytska, V., et al.: Ultra-thin body and thin-BOX SOI CMOS technology analog figures of merit. Solid State Electron. 70, 50–58 (2012)

    Article  Google Scholar 

  7. Makovejev, S., et al.: Impact of self-heating and substrate effects on small-signal output conductance in UTBB SOI MOSFETs. Solid-State Electron. 71, 93–100 (2012)

    Article  Google Scholar 

  8. Md Arshad, M.K., et al.: UTBB SOI MOSFETs analog figures of merit: effects of ground plane and asymmetric double-gate regime. Solid State Electron. (2013). doi:10.1016/j.sse.2013.02.051

  9. Md Arshad, M.K., et al.: RF Behavior of undoped channel ultra-thin body with ultrathin BOX MOSFETs. In: Proceedings of the Silicon Monolitic Integrated Circuits in RF Systems (SiRF), pp. 105–108 (2012)

    Google Scholar 

  10. Makovejev, S., et al.: Comparison of small-signal output conductance frequency dependence in UTBB SOI MOSFETs with and without ground plane. In: Proceedings of the IEEE SOI Conference (2011)

    Google Scholar 

  11. Makovejev, S., et al.: On extraction of self-heating features in UTBB SOI MOSFETs. In: Proceeding of the 13th International Conference on Ultimate integration on silicon, pp. 109–112 (2012)

    Google Scholar 

  12. Kilchytska, V., Andrieu, F., Flandre, D.: On the UTBB SOI MOSFET performance improvement in quasi-double-gate regime. In: Proceedings of the Solid State Device Research Conference (ESSDERC), pp. 246–249 (2012)

    Google Scholar 

  13. Bol, D., Kilchytska, V., De Vos, J., Andrieu, F., Flandre, D.: Quasi-double gate mode for sleep transistors in UTBB FD SOI low-power high-speed applications. In: Proceedings of the IEEE SOI Conference (2012)

    Google Scholar 

  14. Kilchytska, V., Bol, D., De Vos, J., Andrieu, F., Flandre, D.: Quasi-double gate regime to boost UTBB SOI MOSFET performance in analog and sleep transistor applications. Solid-State Electron. 84, 28–37 (2013)

    Article  Google Scholar 

  15. Md Arshad, M.K., et al.: Effect of parasitic elements on UTBB FD SOI MOSFET RF figures of merit. Solid-State Electron. 97, 38–44 (2014)

    Google Scholar 

  16. Flandre, D., Ferreira, L.F., Jespers, P.G.A., Colinge, J.-P.: Modelling and application of fully depleted SOI MOSFETs for low voltage, low power analogue CMOS circuits. Solid-State Electron. 39(4), 455–460 (1996)

    Article  Google Scholar 

  17. Kilchytska, V., et al.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron Devices 50(3), 577–588 (2003)

    Article  Google Scholar 

  18. Raskin, J.-P., Gillon, R., Chen, J., Vanhoenacker-Janvier, D., Colinge, J.-P.: Accurate SOI MOSFET characterization at microwave frequencies for device performance optimization and analog modeling. IEEE Trans. Electron Devices 45(5), 1017–1025 (1998)

    Article  Google Scholar 

  19. Parvais, B., et al.: The device architecture dilemma for CMOS technologies: opportunities and challenges of Finfet over planar mosfet. In: Proceedings of the International Symposium on VLSI Technology, Systems and Applications, pp. 80–81 (2009)

    Google Scholar 

  20. Rudenko, T., et al.: Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid-State Electron. 54(2), 164–170 (2010)

    Article  Google Scholar 

  21. Tenbroek, B.M., Lee, M.S.L., Redman-White, W., Bunyan, R.J.T., Uren, M.J.: Self-heating effects in SOI MOSFET’s and their measurement by small signal conductance techniques. IEEE Trans. Electron Devices 43(12), 2240–2248 (1996)

    Article  Google Scholar 

  22. Jin, W., Liu, W., Fung, S.K.H., Chan, P.C.H., Hu, C.: Self-heating characterization for SOI MOSFET based on AC output conductance. IEEE Trans. Electron Devices 48(4), 730–736 (2001)

    Article  Google Scholar 

  23. Kilchytska, V., Levacq, D., Lederer, D., Raskin, J.-P., Flandre, D.: Floating effective backgate effect on the small-signal output conductance of SOI MOSFETs. IEEE Electron Device Lett. 24(6), 414–416 (2003)

    Article  Google Scholar 

  24. Kilchytska, V., et al.: Substrate effect on the output conductance frequency response of SOI MOSFETs. In: Hall, S., Nazarov, A.N., Lysenko, V.S. (eds.) Nanoscaled Semiconductor-on-Insulator Structures and Devices, pp. 221–238. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  25. O’Neill, A.G., et al.: Reduced self-heating by strained silicon substrate engineering. Appl. Surf. Sci. 254(19), 6182–6185 (2008)

    Article  Google Scholar 

  26. Fiegna, C., Yang, Y., Sangiorgi, E., O’Neill, A.G.: Analysis of self-heating effects in ultrathin-body SOI MOSFETs by device simulation. IEEE Trans. Electron Devices 55(1), 233–244 (2008)

    Article  Google Scholar 

  27. Braccioli, M., Curatola, G., Yang, Y., Sangiorgi, E., Fiegna, C.: Simulation of self-heating effects in different SOI MOS architectures. Solid-State Electron. 53(4), 445–451 (2009)

    Article  Google Scholar 

  28. Kilchytska, V., et al.: Frequency variation of the small-signal output conductance of decananometer MOSFETs due to substrate cross. IEEE Electron Device Lett. 28(5), 419–421 (2007)

    Article  Google Scholar 

  29. Kilchytska, V., Flandre, D., Raskin, J.-P.: Silicon-on-nothing MOSFETs: an efficient solution for parasitic substrate coupling suppression in SOI devices. Appl. Surf. Sci. 254(19), 6168–6173 (2008)

    Article  Google Scholar 

  30. Khakifirooz, A., Cheng, K., Kulkarni, P.: Challenges and opportunities of extremely thin SOI (ETSOI) CMOS technology for future low power and general purpose system-on-chip applications. In: Proceedings of the International Symposium on VLSI Technology, System and Applications, pp. 110–111 (2010)

    Google Scholar 

  31. Khakifirooz, A., et al.: Scalability of extremely thin SOI (ETSOI) MOSFETs to sub-20-nm gate length. IEEE Electron Device Lett. 33(2), 149–151 (2012)

    Article  Google Scholar 

  32. Ko, C., Kuan, T., Zhang, K.: A novel CVD-SiBCN low-k spacer technology for high-speed applications. In: Proceedings of the International Symposium on VLSI Technology (2008)

    Google Scholar 

  33. Niebojewski, H., et al.: Extra-low parasitic gate-to-contacts capacitance architecture for sub-14 nm transistor nodes. In: Proceedings of the EuroSOI Conference (2013)

    Google Scholar 

  34. Ieong, M., et al.: Transistor scaling with novel materials. Mater. Today 9, 26–31 (2006)

    Article  Google Scholar 

  35. Larson, J.M., Snyder, J.P.: Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53(5), 1048–1058 (2006)

    Article  Google Scholar 

  36. Connelly, D., Clifton, P.: Ultra-thin-body fully depleted SOI metal source/drain n-MOSFETs and ITRS low-standby-power targets through 2018. In: Proceedings of the IEEE Electron Devices Meeting (IEDM), pp. 8–11 (2005)

    Google Scholar 

  37. Ohguro, T., Higashi, Y., Okano, K., Inaba, S., Toyoshima, Y.: The optimum device parameters for high RF and analog/MS performance in planar MOSFET and FinFET. In: Proceedings of the International Symposium on VLSI Technology, pp. 149–150 (2012)

    Google Scholar 

  38. Lim, T.C., Armstrong, G.A.: The impact of the intrinsic and extrinsic resistances of double gate SOI on RF performance. Solid-State Electron. 50(5), 774–783 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work has been partly funded by the FNRS (Belgium), by the FP7 NoE ‘‘EuroSOI+’’ and by Catrene “Reaching 22” projects. The authors would like to thank Olivier Faynot, Thierry Poiroux and François Andrieu from CEA-Leti, MINATEC, Grenoble, France for the provided devices and valuable discussions as well as Pascal Simon from WELCOME characterization platform of Université catholique de Louvain, Louvain-la-Neuve, Belgium for his assistance with high-frequency measurements setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya Kilchytska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilchytska, V., Makovejev, S., Md Arshad, M.K., Raskin, JP., Flandre, D. (2014). Perspectives of UTBB FD SOI MOSFETs for Analog and RF Applications. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_2

Download citation

Publish with us

Policies and ethics