Skip to main content

Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Well-known, the interest to the colloidal solution with quantum dots (QDs) lies in their fluorescence properties. Among the advantages of QDs are the high resistance to photooxidation, the size and composition variation allowing to obtain the narrow emission spectra with high quantum yield from the ultraviolet to the near infrared region. In this chapter we present the last achievements in forming and bio-medical applications of luminescent Si and SiC QDs. It is shown that a broad size distribution of Si QDs are obtained at electrochemical etching. The dimensions of the Si QDs undergone filtering in colloidal solution vary discretely with a radius quantum equal to 0.12 nm. Existing of this quantum may correspond to step-like increasing of Si QDs radius on one new shell at the surface of Si QDs. The formed QDs show intense luminescent in visual region. However, one of the major drawbacks of Si QDs for bio-medical application is instability over time in water or buffer solutions. To overcome this drawback the several methods of surface functionalization are discussed. The SiC QDs are stable in water solutions and do not require supplementary surface functionalisation for bioimaging. A strong fluorescence from the SiC QDs, which undoubtedly penetrate into the cell, has been observed. The studying of health and cancer cells using SiC QDs shows that simple modification of surface charge of QDs gives strong opportunity to target the same QDs in intracellular space with their preferential localisation inside or outside the cell nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumar, V. (ed.): Nanosilicon. Elsevier Ltd, Amsterdam (2007)

    Google Scholar 

  2. Geszke-Moritz, M., Moritz, M.: Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Mater. Sci. Eng., C 33, 1008–1021 (2013)

    Article  Google Scholar 

  3. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Article  Google Scholar 

  4. Fan, J., Chu, P.K.: Group IV nanoparticles: synthesis, properties, and biological applications. Small 6, 2080–2098 (2010)

    Article  Google Scholar 

  5. Alivisatos, A.P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)

    Article  Google Scholar 

  6. Parak, W.J., Pellegrino, T., Plank, C.: Labelling of cells with quantum dots. Nanotechnology 16, R9–R25 (2005)

    Article  Google Scholar 

  7. Bonacina, L.: Nonlinear nanomedecine: harmonic nanoparticles toward targeted diagnosis and therapy. Mol. Pharm. 10, 783–792 (2013)

    Article  Google Scholar 

  8. Bluet, J.-M., Botsoa, J., Zakharko, Y., Géloën, A., Alekseev, S., Marty, O., Mognetti, B., Patskovsky, S., Rioux, D., Lysenko, V.: SiC as a biocompatible marker for cell labeling, Chapter 11. In: Silicon Carbide Biotechnology, Saddow, S (ed) Elsevier Inc., pp. 327–429. 2012

    Google Scholar 

  9. Kang, Z., Liu, Y., Lee, S.-T.: Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale 3, 777–791 (2011)

    Article  Google Scholar 

  10. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G.: CdSe-ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 101, 9463–9475 (1997)

    Article  Google Scholar 

  11. Nozik, A.J.: Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001)

    Article  Google Scholar 

  12. Giljohann, D.A., Mirkin, C.A.: Drivers of biodiagnostic development. Nature 462, 461–464 (2009)

    Article  Google Scholar 

  13. Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Article  Google Scholar 

  14. Bruchez Jr, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  Google Scholar 

  15. Derfus, A.M., Chan, W.C.W.: Bhatia SN, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)

    Article  Google Scholar 

  16. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Munoz Javier, A., Gaub, H.E., Stölzle, S., Fertig, N., Parak, W.J.: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005)

    Article  Google Scholar 

  17. Fojtik, A., Henglein, A.: Luminescent colloidal silicon particles. Chem. Phys. Lett. 221, 363–367 (1994)

    Article  Google Scholar 

  18. Erogbogbo, F., Yong, K.-T., Roy, I., Hu, R., Law, W.-C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M.T., Prasad, P.N. In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals, ACS NANO. 5, 413–423 (2011)

    Google Scholar 

  19. Knipping, J., Wiggers, H., Rellinghaus, B., Roth, P., Konjhodzic, D., Meier, C.: Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechn. 4, 1039–1044 (2004)

    Article  Google Scholar 

  20. Sankaran, R.M., Holunga, D., Flagan, R.C., Giapis, K.P.: Synthesis of blue luminescent si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5, 537–541 (2005)

    Article  Google Scholar 

  21. Rowsell, B.D., Veinot, J.G.C.: Reductive thermolysis of a heterocyclic precursor: a convenient method for preparing luminescent, surfactant-stabilized silicon nanoparticles. Nanotechnology 16, 732–736 (2005)

    Article  Google Scholar 

  22. Baldwin, R.K., Pettigrew, K.A., Ratai, E., Augustine, M.P. Kauzlarich, S.M.: Solution reduction synthesis of surface stabilized silicon nanoparticles, Chem. Commun. 17, 1822–1823 (2002)

    Google Scholar 

  23. Zou, J., Baldwin, R.K., Pettigrew, K.A., Kauzlarich, S.M.: Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4, 1181–1186 (2004)

    Article  Google Scholar 

  24. Rao, S., Sutin, J., Clegg, R., Gratton, E., Nayfeh, M.H., Habbal, S., Tsolakidis, A., Martin, R.M. Excited states of tetrahedral single-core Si29 nanoparticles. Phys. Rev. B . 69, art.205319 (2004)

    Google Scholar 

  25. Tanaka, A., Saito, R., Kamikake, T., Imamura, M., Yasuda, H.: Electronic structures and optical properties of butyl-passivated Si nanoparticles. Solid State Commun. 140, 400–403 (2006)

    Article  Google Scholar 

  26. Lysenko, V., Onyskevych, V., Marty, O., Skryshevsky, V.A., Chevolot, Y., Bru-Chevallier, C.: Extraction of ultraviolet emitting silicon species from strongly hydrogenated nanoporous silicon, App. Phys. Let. 92, art.251910 (2008)

    Google Scholar 

  27. Lysenko, V., Bidault, F., Alekseev, S., Turpin, C., Geobaldo, F., Rivolo, P., Garrone, E., Zaitsev, V., Barbier, D.: Study of porous silicon nanostructures as hydrogen reservoirs. J. Phys. Chem. B. 109, 19711–19718 (2005)

    Article  Google Scholar 

  28. Nychyporuk, T., Lysenko, V., Barbier, D. Fractal nature of porous silicon nanocrystallites, Phys. Rev. B. 71, art. 115402 (2005)

    Google Scholar 

  29. Serdiuk, T., Lysenko, V., Alekseev, S., Skryshevsky, V.A.: Size tuning of luminescent silicon nanoparticles with meso-porous silicon membranes. J. Colloid Interface Sci. 364, 65–70 (2011)

    Article  Google Scholar 

  30. Serdiuk, T., Skryshevsky, V.A., Ivanov, I.I., Lysenko, V.: Storage of luminescent nanoparticles in porous silicon: Toward a solid state golden fleece. Mater. Lett. 65, 2514–2517 (2011)

    Article  Google Scholar 

  31. Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., Nayfeh, M.H., Wagner, L., Mitas, L.: Observation of a magic discrete family of ultrabright Si nanoparticles, Appl. Phys. Lett. 80, art. 841 (2002)

    Google Scholar 

  32. Patrone, L., Nelson, D., Safarov, V.I., Sentis, M., Marine, W.: Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation, J. Appl. Phys. 87, art. 3829 (2000)

    Google Scholar 

  33. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C.: Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B. 62, 15942–15951 (2000)

    Article  Google Scholar 

  34. Feng, Z.C., Tsu, R. (eds.): Porous Silicon. World Scientific, Singapore (1994)

    Google Scholar 

  35. Delerue, C., Allan, G., Lannoo, M.: Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B. 48, 11024–11036 (1993)

    Article  Google Scholar 

  36. Kang, Z.H., Tsang, C.H.A., Zhang, Z.D., Zhang, M.L., Wong, N.B., Zapien, J.A., Shan, Y.Y., Lee, S.T.: A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J. Am. Chem. Soc. 129, 5326–5327 (2007)

    Article  Google Scholar 

  37. Kang, Z.H., Tsang, C.H.A., Wong, N.B., Zhang, Z.D., Lee, S.T.: Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129, 12090–12091 (2007)

    Article  Google Scholar 

  38. Heinrich, J.L., Curtis, C.L., Credo, G.M., Kavanagh, K.L., Saylor, M.J.: Luminescent colloidal silicon suspensions from porous silicon. Science 255, 66–68 (1992)

    Article  Google Scholar 

  39. Buriak, J.M., Allen, M.J.: Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J. Am. Chem. Soc. 120, 1339–1340 (1998)

    Article  Google Scholar 

  40. Manilov, A.I., Skryshevsky, V.A.: Hydrogen in porous silicon—a review. Mater. Sci. Eng., B 178, 942–955 (2013)

    Article  Google Scholar 

  41. Anglin, E.J., Cheng, L., Freeman, W.R., Sailor, M.J.: Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008)

    Article  Google Scholar 

  42. Boukherroub, R., Petit, A., Loupy, A., Chazalviel, J.N., Ozanam, F.: Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J. Phys. Chem. B. 107, 13459–13462 (2003)

    Article  Google Scholar 

  43. Wu, E.C., Park, J.-H., Park, J., Segal, E., Cunin, F., Sailor, M.J.: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano. 2, 2401–2409 (2008)

    Article  Google Scholar 

  44. Stewart, M.P., Buriak, J.M.: Photopatterned hydrosilylation on porous silicon. Angew. Chem. Int. Ed. 37, 3257–3260 (1998)

    Article  Google Scholar 

  45. Sam, S., Chazalviel, J.N., Gouget-Laemmel, A.C., Ozanam, F., Etcheberry, A., Gabouze, N.: Peptide immobilisation on porous silicon surface for metal ions detection. Nanoscale Res. Lett. 6, art.412 (2011)

    Google Scholar 

  46. Hua, F., Swihart, M.T., Ruckenstein, E.: Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21, 6054–6062 (2005)

    Article  Google Scholar 

  47. Ruizendaal, L., Pujari, S.P., Gevaerts, V., Paulusse, J.M.J., Zuilhof, H.: Biofunctional silicon nanoparticles by means of thiol-ene click chemistry. Chem. Asian J. 6, 2776–2786 (2011)

    Article  Google Scholar 

  48. Sweryda-Krawiec, B., Cassagneau, T., Fendler, J.H.: Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B. 103, 9524–9529 (1999)

    Article  Google Scholar 

  49. Hallmann, S., Fink, M.J.: Mechanochemical synthesis of functionalized silicon nanoparticles with terminal chlorine groups. J. Mater. Res. 26, 1052–1060 (2011)

    Article  Google Scholar 

  50. Rosso-Vasic, M., Spruijt, E., Popovic, Z., Overgaag, K., Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutierrez, D., De Cola, L., Zuilhof, H.: Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926–5933 (2009)

    Article  Google Scholar 

  51. Kang, Z.H., Liu, Y., Tsang, C.H.A., Ma, D.D.D., Fan, X., Wong, N.B., Lee, S.T.: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661–664 (2009)

    Article  Google Scholar 

  52. He, Y., Su, Y.Y., Yang, X.B., Kang, Z.H., Xu, T.T., Zhang, R.Q., Fan, C., Lee, S.T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 4434–4438 (2009)

    Article  Google Scholar 

  53. He, Y., Fan, C., Lee, S.-T.: Silicon nanostructures for bioapplications. Nano Today 5, 282–295 (2010)

    Article  Google Scholar 

  54. Wang, J., Liu, Y., Peng, F., Chen, C., He, Y., Ma, H., Cao, L., Sun, S.: A general route to effi cient functionalization of silicon quantum dots for high-performance fluorescent probes. Small 8, 2430–2435 (2012)

    Article  Google Scholar 

  55. Gongalsky, M.B., Yu, K.A., Osminkina, L.A., Yu, T.V., Jeong, J., Lee, H. Chung, B.H.: Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers, Nanoscale Res. Lett. 7, art.446 (2012)

    Google Scholar 

  56. Li, Z.F., Ruckenstein, E.: Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, art. 14631467 (2004)

    Google Scholar 

  57. Zhang, X., Neiner, D., Wang, S., Louie, A.Y., Kauzlarich, S.M.: A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology. 18, art. 095601 (2007)

    Google Scholar 

  58. Sudeep, P.K., Page, Z., Emrick, T.: PEGylated silicon nanoparticles: synthesis and characterization. Chem. Commun. 46, 6126–6127 (2008)

    Google Scholar 

  59. Wang, K., Wang, Q., Chao, Y.: Simple fabrication of nanostructured silicon and photoluminescence. Appl. Phys. A 109, 437–440 (2012)

    Article  Google Scholar 

  60. Ge, J., Liu, W., Zhao, W., Zhang, H., Zhuang, X., Lan, M., Wang, P., Li, H., Ran, G., Lee, S.-T.: Preparation of highly stable and water-dispersible silicon quantum dots by using an organic peroxide. Chem. Eur. J. 17, 12872–12876 (2011)

    Article  Google Scholar 

  61. Erogbogbo, F., Chang, C.-W., May, J.L., Liu, L., Kumar, R., Law, W.-C., Ding, H., Yong, K.T., Roy, I., Sheshadri, M., Swihart, M.T., Prasad, P.N.: Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4, 5483–5489 (2012)

    Article  Google Scholar 

  62. May, J.L., Erogbogbo, F., Yong, K.-T., Ding, H., Law, W.-C., Swihart, M.T., Prasad, P.N.: Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic® encapsulation and antibody targeting. J. Solid Tumors 2, 24–37 (2012)

    Article  Google Scholar 

  63. Fan, J.Y., Wu, X.L., Chu, P.K.: Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog. Mat. Sci. 51, 983–1031 (2006)

    Article  Google Scholar 

  64. Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T,. Mimura, H., Kanemitsu, Y.A.: Bluegreen luminescence from porous silicon carbide. Appl. Phys. Lett. 64, art. 226 (1994)

    Google Scholar 

  65. Petrova-Koch, V., Sreseli, O., Polisski, G., Kovalev, D., Muschik, T., Koch, F.: Luminescence enhancement by electrochemical etching of SiC(6H). Thin Solid Films 255, 107–110 (1995)

    Article  Google Scholar 

  66. Rossi, A.M., Murphy, Th.E., Reipa, V.: Ultraviolet photoluminescence from 6H silicon carbide nanoparticles. Appl. Phys. Lett. 92, art.253112 (2008)

    Google Scholar 

  67. Botsoa, J., Bluet, J.-M., Lysenko, V., Marty, O., Barbier, D., Guillot, G.: Photoluminescence of 6H–SiC nanostructures fabricated by electrochemical etching. J. Appl. Phys. 102, art. 083526 (2007)

    Google Scholar 

  68. Wu, X.L., Fan, J.Y., Qiu, T., Yang, X., Siu, G.G., Chu, P.K.: Experimental evidence for the quantum confinement effect in 3C-SiC Nanocrystallites. Phys. Rev. Lett. 94, art. 026102 (2005)

    Google Scholar 

  69. Fan, J.Y., Wu, X.L., Li, H.X., Liu, H.W., Siu, G.G., Chu, P.K.: Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl. Phys. Lett. 88, art. 041909 (2006)

    Google Scholar 

  70. Zakharko, Y., Botsoa, J., Alekseev, S., Lysenko, V., Bluet, J.-M., Marty, O., Skryshevsky, V.A., Guillot, G.: Influence of the interfacial chemical environment on the luminescence of 3C- SiC nanoparticles. J. Appl. Phys. 107, art. 013503 (2010)

    Google Scholar 

  71. Serdiuk, T., Alekseev, S.A., Lysenko, V., Skryshevsky, V.A., Géloën, A.: Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology 23, art.315101 (2012)

    Google Scholar 

  72. Alekseev, S., Botsoa, J., Zaitsev, V.N., Barbier, D.: Fourier transform infrared spectroscopy and temperature programmed desorption mass spectrometry study of surface chemistry of porous 6H-SiC. Chem. Mater. 19, 2189–2194 (2007)

    Article  Google Scholar 

  73. Shin, W., Seo, W., Takai, O., Koumoto, K.: Surface chemistry of porous silicon carbide. J. Electron. Mater. 27, 304–307 (1998)

    Article  Google Scholar 

  74. Beke, D., Szekre’nyes, Z., Balogh, I., Veres, M., Fazakas, E., Varga, L.K., Kamara’s, K., Cziga’ny, Z., Gali, A.: Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching, Appl. Phys. Lett. 99, art. 213108 (2011)

    Google Scholar 

  75. Li, Y., Chen, C., Li, J.-T., Yang, Y., Lin, Z.-M.: Surface charges and optical characteristic of colloidal cubic SiC nanocrystals. Nanoscale Res. Lett. 6, art. 454 (2011)

    Google Scholar 

  76. Zhang, N., Dai, D., Zhang, W., Fan, J.: Photoluminescence and light reabsorption in SiC quantum dots embedded in binary-polyelectrolyte solid matrix. J. Appl. Phys. 112, art. 094315 (2012)

    Google Scholar 

  77. Che, J., Wang, X., Xiao, Y., Wu, X., Zhou, L., Yuan, W.: Effect of inorganic–organic composite coating on the dispersion of silicon carbide nanoparticles in non-aqueous medium. Nanotechnology 18, art.135706 (2007)

    Google Scholar 

  78. Iijima, M., Kamiya, H.: Surface modification of silicon carbide nanoparticles by azo radical initiators. J. Phys. Chem. C 112, 11786–11790 (2008)

    Article  Google Scholar 

  79. Pud, A.A., Noskov, Y.V., Kassiba, A., Fatyeyeva, K.Y., Ogurtsov, N.A., Makowska-Janusik, M., Bednarski, W., Tabellout, M., Shapoval, G.S.: New aspects of the low-concentrated aniline Polymerization in the solution and in SiC nanocrystals dispersion. J. Phys. Chem. B. 111, 2174–2180 (2007)

    Article  Google Scholar 

  80. Serdiuk, T., Lysenko, V., Skryshevsky, V.A., Géloën, A.: Vapor phase mediated cellular uptake of sub 5 nm nanoparticles. Nanoscale Res. Lett. 7: art. 212 (2012)

    Google Scholar 

  81. Serdiuk, T., Lysenko, V., Mognetti, B., Skryshevsky, V., Géloën, A.: Impact of cell division on intracellular uptake and nuclear targeting with fluorescent SiC-based nanoparticles. J. Biophotonics 6, 291–297 (2013)

    Article  Google Scholar 

  82. Tagliazucchi, M., Peleg, O., Kroger, M., Rabin, Y., Szleifer, I.: Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. PNAS 110, 3363–3368 (2013)

    Article  Google Scholar 

  83. Weisburg, J.H., Weissman, D.B., Sedaghat, T., Babich, H.: In vitro cytotoxicity of epigallocat echin gallate and tea extracts to cancerous and normal cells from the human oral cavity, Basic Clin. Pharmacol. Toxicol. 95, 191–200 (2004)

    Article  Google Scholar 

  84. Zakharko, Yu., Serdiuk, T., Nychyporuk, T., Geloen, A., Lemiti, M., Lysenko, V.: Plasmon-enhanced photoluminescence of SiC quantum dots for cell imaging applications. Plasmonics 7, 725–732 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy A. Skryshevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skryshevsky, V.A., Serdiuk, T., Zakharko, Y.E., Alekseev, S.A., Géloën, A., Lysenko, V. (2014). Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_15

Download citation

Publish with us

Policies and ethics