Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 2254 Accesses

Abstract

Responsivity R and noise equivalent power NEP of long channel unbiased silicon field effect transistors (FETs) as mm-wave/THz detectors, accounting for resistive and capacitive parasitics, are compared with those of contemporary Schottky barrier diode (SBD) mm/sub-mm detectors. The ultimate performance limits of such detectors are estimated. It is shown that with account of the parasitics and detector-antenna matching one can describe these FET and SBD detector parameters. As compared to SBD detectors, the FET ones seem to be preferable in future applications for active imaging, especially in the radiation region above the frequency range of 1 THz or a little bit lower. They should overcome SBD ones because of possible better adjustment of FET parameters to antenna impedance due to nowadays better developed silicon technologies and the possibility of proper integrated detector design/fabrication compared to technologies of III-V ternary compounds applied to SBD detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogalski, A., Sizov, F.: Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 19, 346–404 (2011)

    Article  Google Scholar 

  2. Miller, A.J., Luukanen, A., Grossman, E.N.: Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays. Proc. SPIE 5411, 8–24 (2004)

    Google Scholar 

  3. Huhn, A.K., Spickermann, G., Ihring, A., et al.: Uncooled antenna-coupled THz detectors with 22 μs response time based on BiSb/Sb thermocouples. Appl. Phys. Lett. 102, 121102 (2013)

    Article  Google Scholar 

  4. Bolduc, M., Terroux, M., Marchese, L., et al.: THz imaging and radiometric measurements using a microbolometer-based camera. In: IRMMW-THz IEEE 36th International Conference, Houston, July 2011

    Google Scholar 

  5. Nguyen, D.-T., Simoens, F., Ouvrier-Buffet, J.-L., et al.: NIKON 2012. In: 19th International Conference on Microwaves Radar Wireless Communications, pp. 116–121. Warsaw, May 2012

    Google Scholar 

  6. Grossman, E.N., Miller, A.J.: Active millimeter-wave imaging for concealed weapons detection. Proc. SPIE 5077, 62–70 (2003)

    Article  Google Scholar 

  7. Kasalynas, I., Adam, A.J.L., Klaassen, T.O., et al.: Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE J. Sel. Top. Quant. Electron. 14, 363–369 (2008)

    Article  Google Scholar 

  8. Lee, A.W.M., Williams, B.S., Kumar, S., et al.: Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array. IEEE Photonics Technol. Lett. 18, 1415–1417 (2006)

    Article  Google Scholar 

  9. Liu, L., Hessler, J.L., Hu, H., et al.: A broadband quasi-optical terahertz detector utilizing a zero-bias Schottky diode. IEEE Microwave Wirel. Compon. Lett. 20, 504–506 (2010)

    Article  Google Scholar 

  10. Brown, E.R., Young, A.C., Zimmerman, J.D., Gossard, A.C.: Advances in Schottky rectifier performance. IEEE Microwave Mag. 8(3), 54–59 (2007)

    Google Scholar 

  11. Semenov, A., Cojocari, O., Hubers, H.-W., et al.: Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Device Lett. 31, 674–676 (2010)

    Article  Google Scholar 

  12. Schoenherr, D., Bleasdale, C., Goebel, T. et al.: Extremely broadband characterization of a Schottky diode based THz detector. In: 35th International Conference on Infrared and Millimeter Waves—IRMMW-THz, pp. 1–2. IEEE, 2010

    Google Scholar 

  13. Chahal, P., Morris, F., Frazier, G.: Zero bias resonant tunnel Schottky contact diode for wide-band direct detection. IEEE Electron Device Lett. 26, 894–896 (2005)

    Article  Google Scholar 

  14. Han, R., Zhang, Y., Kim, Y. et al.: 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS. In: 2012 IEEE International Solid State Circuits Conference, pp. 254–256. IEEE, 2012

    Google Scholar 

  15. Schuster, F., Coquillat, D., Videlier, H., et al.: Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt. Express 19, 7827–7832 (2011)

    Article  Google Scholar 

  16. Hadi, R.A., Sherry, H., Grzyb, J., et al.: A Broadband 0.6 to 1 THz CMOS imaging detector with and integrated lens. In: 2011 36th International Conference on Infrared and Millimeter Waves IRMMW-THz, pp. 1–4. IEEE, 2011

    Google Scholar 

  17. Öjefors, E., Pfeiffer, U.R., Lisauskas, A., Roskos, H.G.: A 0.65 THz focal-plane array in a quarter-micron cmos process technology. IEEE J. Solid-State Circuits 44, 1968–1976 (2009)

    Article  Google Scholar 

  18. Pleteršek, A., Trontelj, J.: A self-mixing n-MOS channel-detector optimized for mm-wave and THz signals. J. Infrared Millimeter Terahertz Waves 33, 615–626 (2012)

    Article  Google Scholar 

  19. Boppel, S., Lisauskas, A., Mundt, M., et al.: CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microwave Theory Tech. 60, 3834–3843 (2012)

    Article  Google Scholar 

  20. Sizov, F., Petriakov, V., Zabudsky, V., et al.: Millimeter-wave hybrid un-cooled narrow-gap hot-carrier and Schottky diodes direct detectors. Appl. Phys. Lett. 101, 082108 (2012)

    Article  Google Scholar 

  21. Knap, W., Dyakonov, M., Coquillat, D., et al.: Field effect transistors for terahertz detection: physics and first imaging applications. J. Infrared Millimeter Terahertz Waves 30, 1319–1337 (2009)

    Google Scholar 

  22. Kazemi, H., Nagy, G., Tran, L., et al.: Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications. In: IEEE/MTT-S International Microwave Symposium, pp. 1367–1370. Honolulu, Jun 2007

    Google Scholar 

  23. Liu, L., Hessler, J.L., Hu, H., et al.: A broadband quasi-optical terahertz detector utilizing a zero-bias Schottky diode. IEEE Microwave Wirel. Compon. Lett. 20, 504–506 (2010)

    Article  Google Scholar 

  24. Dyakonov, M.I., Shur, M.S.: Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1645 (1996)

    Article  Google Scholar 

  25. Pu, L.-J., Tsividis, Y.P.: Harmonic distortion of the four-terminal MOSFET in non-quasistatic operation. IEE Proc. G (Circuits, Devices Syst) 137, 325–332 (1990)

    Google Scholar 

  26. Kenneth, K.O.: Sub-millimeter wave CMOS integrated circuits and systems. In: RFIT2011-IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1–8. Beijing, Nov 2011

    Google Scholar 

  27. Chen, Z., Wang, C.C., Yao, H.C., Heydari, P.: A BiCMOS W-Band 2 × 2 focal-plane array with on-chip antenna. IEEE J. Solid-Stat e Circuits 47, 2355–2371 (2012)

    Article  Google Scholar 

  28. Gu, Q.J., Xu, Zh., Jian, H.Yu., Chang, M.F.: A CMOS fully differential W-band passive imager with <2 K NETD. In: Radio Frequency Integrated Circuit IEEE Symposium: RFIC, pp. 1–4 (2011)

    Google Scholar 

  29. Chew, W., Fetterman, H.R.: Millimeter-wave imaging using FET detectors integrated with printed circuit antennas. Int. J. Infrared Millimeter Waves 10, 565–578 (1989)

    Article  Google Scholar 

  30. Cowley, A.M., Sorensen, H.O.: Quantitative comparison of solid-state microwave detectors. IEEE Trans. Microwave Theory Tech. 14, 588–602 (1966)

    Article  Google Scholar 

  31. Brown, E.R.: A system-level analysis of Schottky diodes for incoherent THz imaging arrays. Solid State Electron. 48, S2051–S2053 (2004)

    Article  Google Scholar 

  32. Yu, C., Wu, C.-L., Kshattry, S., et al.: Compact, high impedance and wide bandwidth detectors for characterization of millimeter wave performance. IEEE J. Solid-State Circuits 47, 2335–2343 (2012)

    Article  Google Scholar 

  33. Tomkins, A., Garcia, P., Voinigescu, S.P.: A passive W-band imaging receiver in 65-nm bulk CMOS. IEEE J. Solid-State Circuits 45, 1981–1991 (2010)

    Article  Google Scholar 

  34. Gilreath, L., Jain, V., Heydari, P.: Design and analysis of a W-Band SiGe direct-detection-based passive imaging receiver. IEEE J. Solid-State Circuits 46, 2240–2252 (2011)

    Article  Google Scholar 

  35. Sizov, F., Rogalski, A.: THz detectors. Progr. Quantum Electron. 34, 278–347 (2010)

    Article  Google Scholar 

  36. Tsividis, Y., McAndrew, C.: Operation and modeling of the MOS transistor. Oxford University Press, New York (2011)

    Google Scholar 

  37. Tauk, R., Teppe, F., Boubanga, S., et al.: Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)

    Article  Google Scholar 

  38. Knap, W., Coquillat, D., Dyakonov, M., et al.: Field effect transistors for terahertz detection: physics and first imaging applications. J. Infrared Millimeter Terahertz Waves 30, 1319–1337 (2009)

    Google Scholar 

  39. Turchetti, C., Mancini, P., Masetti, G.: A CAD-oriented non-quasi-static approach for the transient analysis of MOS ICs. IEEE J. Solid-State Circuits 21, 827–883 (1986)

    Article  Google Scholar 

  40. Mancini, P., Turchetti, C., Masetti, G.: A non-quasi-static analysis of the transient behavior of the long-channel MOST valid in all regions of operation. IEEE Trans. Electron Devices 34, 325–334 (1987)

    Article  Google Scholar 

  41. Pozar, D.M.: Microwave Engineering. Wiley, USA (2011)

    Google Scholar 

  42. Lisauskas, A., Pfeiffer, U., Öjefors, E., et al.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)

    Article  Google Scholar 

  43. Pao, H.C., Sah, C.T.: Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid State Electron. 9, 927–937 (1966)

    Article  Google Scholar 

  44. Tsividis, Y., Suyama, K., Vavelidis, K.: Simple “reconciliation” MOSFET model valid in all regions. Electron. Lett. 31, 506–508 (1995)

    Article  Google Scholar 

  45. Liu, W.: MOSFET models for SPICE simulation, including BSIM3v3 and BSIM4. Wiley, New York (2001)

    Book  Google Scholar 

  46. Gildenblat, G.: Compact Modeling: Principles, Techniques and Applications. Springer, Netherlands (2010)

    Book  Google Scholar 

  47. Sakowicz, M., Lifshits, M.B., Klimenko, O.A., et al.: Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110, 054512 (2011)

    Article  Google Scholar 

  48. Preu, S., Kim, S., Verma, R., et al.: An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111, 024502 (2012)

    Article  Google Scholar 

  49. Gutin, A., Kachorovski, V., Muraviev, A., Shur, M.: Plasmonic terahertz detector response at high intensities. J. Appl. Phys. 112, 014508 (2012)

    Article  Google Scholar 

  50. Knap, W., Kachorovski, V., Deng, Y., et al.: Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002)

    Article  Google Scholar 

  51. Lisauskas, A., Glaab, D., Roskos, H.G., et al.: Terahertz imaging with Si MOSFET focal-plane arrays. Proc. SPIE 7215, 72150J (2009)

    Article  Google Scholar 

  52. Lisauskas, A., Pfeiffer, U., Öjefors, E., et al.: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)

    Article  Google Scholar 

  53. Ratni, M., Huyart, B., Bergeaut, E., Jallet, L.: RF power detector using a silicon a silicon MOSFET, IEEE MTTT-Symposium Digest, pp. 1139–1142 (1998)

    Google Scholar 

  54. Enz, C., Cheng, Y.: MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35, 186–201 (2000)

    Article  Google Scholar 

  55. Sizov, F., Golenkov, A., But, D., et al.: Sub-THz room-temperature sensitivity of long channel field effect transistors. Opto-Electron. Rev. 20, 194–199 (2012)

    Article  Google Scholar 

  56. Balanis, C.A.: Antenna theory analysis and design. Wiley, New Jersey (2005)

    Google Scholar 

  57. Volakis, H.L.: Antenna Engineering Handbook. McGraw−Hill, New York (2007)

    Google Scholar 

  58. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley-Interscience, New York (2006)

    Book  Google Scholar 

  59. Shepherd, F.D.: Infrared Detectors: State of the Art. Proc. SPIE 1735, 250–261 (1992)

    Article  Google Scholar 

  60. Myburg, G., Auret, F.D., Meyer, W.E., et al.: Summary of Schottky barrier height data on epitaxially grown n- and p-GaAs. Thin Solid Films 325, 181–186 (1998)

    Article  Google Scholar 

  61. Lynch, J.J., Moyer, H.P., Schaffner, J.H., et al.: Passive millimeter-wave imaging module with preamplified zero-bias detection. IEEE Trans. Microwave Theory Tech. 56, 1592–1600 (2008)

    Article  Google Scholar 

  62. Hesler, J.L., Crowe, T.W.: Responsivity and noise measurements of zero-bias Schottky diode detectors. In: 2007 18th International Symposium on Space Terahertz Technology, pp. 89–92. Pasadena, CA, March (2007)

    Google Scholar 

  63. Shashkin, V.I., Murel, A.V., Daniltsev, V.M., Khrykin, O.I.: Control of charge transport mode in the Schottky barrier by δ-doping: Calculation and experiment for Al/GaAs. Semiconductors 36, 505–510 (2002)

    Article  Google Scholar 

  64. Hesler, J.L., Liu, L., Xu, H., et al.: The development of quasi-optical THz detectors. In: IRMMW-THz 2008 33rd International Conference Infrared Millimeter Terahertz Waves, Pasadena, U.S. 15–19 Sept 2008

    Google Scholar 

  65. Han, R., Zhang, Y., Coquillat, D., et al.: A 280-GHz Schottky diode detector in 130-nm digital CMOS. IEEE J. Solid-State Circuits 46, 2602–2611 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Sizov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sizov, F., Sakhno, M., Golenkov, A. (2014). Uncooled Detector Challenges for mm/sub-mm Range. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_13

Download citation

Publish with us

Policies and ethics