Skip to main content

Engineered Substrates for Advanced CMOS Technology Nodes and More-Than-Moore Applications

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Traditional planar bulk or partially depleted SOI (PDSOI) CMOS transistor architectures at present leading edge of miniaturization are plagued by limitations due to unacceptably high current leakages and variability. To cope with these intrinsic limitations there is a need to introduce innovative technologies which take advantage of the benefits of Fully Depleted (FD) devices. There are two main architectures for the undoped channel FD device: 3D FinFETs (SOI or bulk-based) and 2D FDSOI-based transistors. Both of them are being introduced in high volume manufacturing (HVM). A pioneer of SOI concept, silicon on sapphire (SOS) substrates, have recently entered a mainstream radio frequency (RF) application market. Other flavors of engineered substrates, e.g. for photonics or 3D-based applications, have moved from research to industrial development phase. In this work an overview of the recent advances in the development of the engineered substrates for More Moore and More-than-Moore applications will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skotnicki, T., Arnaud, F., Faynot, O.: UTBB SOI: a wolf in sheep’s clothing. Fut. Fab Int. 42, 72–79 (2012)

    Google Scholar 

  2. Auth, C., et al.: A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Symposium on VLSI Technology. Digest of Technical Papers, pp. 131–132 (2012)

    Google Scholar 

  3. Schwarzenbach, W., Daval, N., Barec, V., Bonnin, O., Acosta-Alba, P., Maddalon, C., Chibko, A., Robson, T., Nguyen, B.Y., Maleville, C.: Atomic scale thickness control of SOI wafers for fully depleted applications. ECS Trans. 53(5), 39–46 (2013)

    Article  Google Scholar 

  4. Schwarzenbach, W., Cauchy, X., Boedt, F., Bonnin, O., Butaud, E., Girard, C.B.-Y., Nguyen, B.Y., Mazure, C., Maleville, C.: Excellent silicon thickness uniformity on ultra-thin SOI for controlling Vt variation of FDSOI. In: IEEE International Conference on ICICDT 2012–Paper B3 (2011)

    Google Scholar 

  5. Besnard, G., Garros, X., Nguyen, P., Andrieu, F., Reynaud, P., Van Den Daele, W., Bourdelle, K.K., Schwarzenbach, W., Reimbold, G., Cristoloveanu, S.: Reliability of ultrathin buried oxides for multi-VT FDSOI technology. In: EuroSOI Conference 2013–Paper 3.3 (2013)

    Google Scholar 

  6. Hashemi, P., et al.: High-performance Si1-xGex channel on insulator tri-gate PFETs featuring an implant-free process and aggressively-scaled fin and gate dimensions. In: Symposium on VLSI Technology. Digest of Technical Papers–Paper 2.2 (2013)

    Google Scholar 

  7. Brown, A.R., Daval, N., Bourdelle, K.K., Nguyen, B.Y., Asenov, A.: Simulation analysis of process-induced variability in nanoscale SOI and bulk FinFETs. In: IEEE International SOI Conference–Paper 11.4 (2012)

    Google Scholar 

  8. Dobrovolný, P., Zuber, P., Miranda, M., Garcia Bardon, M., Chiarella, T., Buchegger, P., Mercha, K., Verkest, D., Steegen, A., Horiguchi, N.: Impact of fin height variations on SRAM yield. In: Symposium on VLSI-TSA. Digest of Technical Papers–Paper T45 (2012)

    Google Scholar 

  9. Schwarzenbach, W., Daval, N., Kerdilès, S., Chabanne, G., Figuet, C., Guerroudj, S., Bonnin, O., Cauchy, X., Nguyen, B.Y., Maleville, C.: Strained silicon on insulator substrates for fully depleted application. In: IEEE International ICICDT Conference–Paper H3 (2012)

    Google Scholar 

  10. Tiberj, A., Paillard, V., Aulnette, C., Daval, D., Bourdelle, K.K., Moreau, M., Kennard, M., Cayrefourcq, I.: Stress metrology: the challenge for the next generation of engineered wafers. In: Proceedings of Materials Research Society Symposium–Paper B3.1.1, vol. 809 (2004)

    Google Scholar 

  11. Fenouillet-Beranger, C., Perreau, P., Weber, O., Ben-Akkez, I., Cros, A., Bajolet, A., Haendler, S., Fonteneau, P., Gouraud, P., Richard, E., Abbate, F., Barge, D., Pellissier-Tanon, D., Dumont, B., Andrieu, F., Passieux, J., Bon, R., Barral, V., Golanski, D., Petit, D., Planes, N., Bonin, O., Schwarzenbach, W., Poiroux, T., Faynot, O., Haond, M., Boeuf, F.: Enhancement of devices performance of hybrid FDSOI/Bulk technology by using UTBOX sSOI substrates. In: Symposium on VLSI Technology. Digest of Technical Papers, pp. 115–116 (2012)

    Google Scholar 

  12. Allibert, F., Cheng, K., Schwarzenbach, W., Khakifirooz, A., Ecarnot, L., Nguyen, B.Y., Doris, B.: Evaluation of sSOI wafers for 22 nm node and beyond. In: SOI Conference–Paper 7.2 (2012)

    Google Scholar 

  13. Minamisawa, R.A., Süess, M.J., Spolenak, R., Faist, J., David, C., Gobrecht, J., Bourdelle, K.K., Sigg, H.: Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5 %. Nat. Commun. 3, 1096 (2012). doi: 10.1038/ncomms2102

  14. Knoll, L., Zhao, Q.T., Nichau, A., Trellenkamp, S., Richter, S., Schäfer, A., Esseni, D., Selmi, L., Bourdelle, K.K., Mantl, S.: Inverters with strained Si nanowire complementary tunnel field-effect transistors. Electron Device Lett. IEEE 34, 813–815 (2013)

    Article  Google Scholar 

  15. Daval, N., Figuet, C., Aulnette, C., Landru, D., Drazek, C., Bourdelle, K.K., Guiot, E., Letertre, F., Nguyen, B.Y., Mazure, C.: SiGe and Ge on insulator wafers. ECS Trans. 35(5), 29–38 (2011)

    Article  Google Scholar 

  16. Ikeda, K., Kamimuta, Y., Moriyama, Y., Ono, M., Koji, U., Oda, M., Irisawa, T., Furuse, K., Tezuka, T.: Enhancement of hole mobility and cut-off characteristics of strained Ge nanowire pMOSFETs by using plasma oxidized GeOx inter-layer for gate stack. In: Symposium on VLSI Technology. Digest of Technical Papers–Paper 3.3 (2013)

    Google Scholar 

  17. Ivana Subramanian, S., Owen, M.H.S., Tan, K.H., Loke, W.K., Wicaksono, S., Yoon, S.F., Yeo, Y.C.: N-channel InGaAs field-effect transistors formed on Germanium-on-insulator substrates. Appl. Phys. Express 5(116502), 1–3 (2012)

    Google Scholar 

  18. Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Zussy, M., Papon, A.M., Bruel, M.: Transfer of 3in GaAs film on silicon substrate by proton implantation process. Electron. Lett. 34, 408–409 (1998)

    Article  Google Scholar 

  19. Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Papon, A.M., Bruel, M.: Transfer of thin InP films onto silicon substrate by proton implantation process. In: Proceedings of the 11th International Conference on Indium Phosphide and Related Materials, pp. 26–27 (1999)

    Google Scholar 

  20. Di Cioccio, L., Jalaguier, E., Letertre, F.: III–V layer transfer onto silicon and applications. Phys. Status Solidi A 202, 509–515 (2005)

    Article  Google Scholar 

  21. Czornomaz, L., Daix, N., Caimi, D., Sousa, M., Erni, R., Rossell, M.D., El-Kazzi, M., Rossel, C., Marchiori, C., Uccelli, E., Richter, M., Siegwart, H., Fompeyrine, J.: An integration path for gate-first UTB III–V-on-insulator MOSFETs with silicon, using direct wafer bonding and donor wafer recycling. In: Proceedings of the IEEE International Conference on Electron Devices Meeting, IEDM 2012. Technical Digest, pp. 517–520 (2012)

    Google Scholar 

  22. Kim, S.H., Yokoyama, M., Nakane, R., Ichikawa, O., Osada, T., Hata, M., Takenaka, M., Takagi, S.: Strained extremely-thin body In0.53Ga0.47As-on-insulator MOSFETs on Si substrates. In: Symposium on VLSI Technology. Digest of Technical Papers–Paper 5-1 (2013)

    Google Scholar 

  23. Kim, S.H., Yokoyama, M., Nakane, R., Ichikawa, O., Osada, T., Hata, M., Takenaka, M., Takagi, S.: High performance extremely-thin body InAs-on-insulator MOSFETs on Si with Ni-InGaAs metal S/D by contact resistance reduction technology. In: Symposium on VLSI Technology. Digest of Technical Papers–Paper 5-2 (2013)

    Google Scholar 

  24. Imthurn, G.P., Miscione, A.M., Landry, K., Vaufredaz, A., Barge, T., Lagahe-Blanchard, C.: Strain reduction in silicon-on-sapphire by wafer bonding. In: SOI Conference–Paper 6.2 (2011)

    Google Scholar 

  25. Ben Ali, K., Roda Neve, C., Gharsallah, A., Raskin, J.P.: RF SOI CMOS technology on commercial trap-rich high resistivity SOI wafer. In: SOI Conference–Paper 9.2 (2012)

    Google Scholar 

  26. Roda Neve, C., Raskin, J.P.: RF harmonic distortion of CPW lines on HR-Si and trap-rich HR-Si substrates. Electron. Devices IEEE Trans. 59, 924–932 (2012)

    Article  Google Scholar 

  27. Roda Neve, C., Ben Ali, K., Malaquin, C., Allibert, F., Desbonnets, E., Bertrand, I., Van Den Daele, W., Raskin, J.P.: RF and linear performance of commercial 200 mm trap-rich HR-SOI wafers for SoC applications. In: Proceedings of the 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems–SiRF’13–Paper MO2B-2 (2013)

    Google Scholar 

  28. Zuffada, M.: The industrialization of the silicon photonics: technology road map and applications. In: 42nd European Solid-State Device Research Conference, ESSDERC 2008, pp. 7–13 (2012)

    Google Scholar 

  29. Akiyama, S., Grawert, F.J., Liu, J., Wada, K., Celler, G.K., Kimerling, L.C., Kaertner, F.X.: Fabrication of highly reflecting epitaxy-ready Si/SiO2 Bragg reflectors. Photonics Technol. Lett. IEEE 17, 1456–1458 (2005)

    Article  Google Scholar 

  30. Sadaka, M., Radu, I., Lagahe-Blanchard, C., Di Cioccio, L.: Stacking™ and smart cut™ technologies for wafer level 3D integration. In: ICICDT Conference–Paper L4 (2012)

    Google Scholar 

  31. Radu, I., Landru, D., Gaudin, G., Riou, G., Tempesta, C., Letertre, F., Di Cioccio, L., Gueguen, P., Signamarcheix, T., Euvrard, C., Dechamp, J., Clavelier, L., Sadaka, M.: Recent developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking. In: Proceedings of the IEEE International Conference on 3D Systems Integration (3DIC) 2010, pp. 1–6 (2010)

    Google Scholar 

  32. Gaudin, G., Riou, G., Landru, D., Tempesta, C., Radu, I., Sadaka, M., Winstel, K., Kinser, E., Hannon, R.: Low temperature direct wafer to wafer bonding for 3D integration: Direct bonding, surface preparation, wafer-to-wafer alignment. In: Proceedings of the IEEE International Conference on 3D Systems Integration (3DIC) 2010, pp. 1–4 (2010)

    Google Scholar 

  33. Di Cioccio, L., Radu, I., Baudin, F., Mounier, A., Lacave, T., Delaye, V., Imbert, B., Chevalier, N., Mariolle, D., Thieffry, S., Mazen, F., Gaudin, G., Signamarcheix, T.: Wafer level 3D stacking using smart cut™ and metal-metal direct bonding technology. ECS Trans. 50(7), 169–175 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Fruitful discussions and advices provided by B.-Y. Nguyen, W. Schwarzenbach, C. Aulnette, N. Daval, O. Bonnin, F. Allibert, L. Ecarnot, P. Nguyen, X. Cauchy, I. Radu, M. Sadaka, E. Desbonnets, C. Cailler, A. Rigny, and many other colleagues at Soitec, CEA-LETI, IMEP-LAHC, and STMicroelectronics are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin K. Bourdelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bourdelle, K.K. (2014). Engineered Substrates for Advanced CMOS Technology Nodes and More-Than-Moore Applications. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_1

Download citation

Publish with us

Policies and ethics