Skip to main content

Signal and System Approximation from General Measurements

  • Chapter
  • First Online:
New Perspectives on Approximation and Sampling Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this paper we analyze the behavior of system approximation processes for stable linear time-invariant (LTI) systems and signals in the Paley–Wiener space \(\mathcal{P}\mathcal{W}_{\pi }^{1}\). We study approximation processes, where the input signal is not directly used to generate the system output but instead a sequence of numbers is used that is generated from the input signal by measurement functionals. We consider classical sampling which corresponds to a pointwise evaluation of the signal, as well as several more general measurement functionals. We show that a stable system approximation is not possible for pointwise sampling, because there exist signals and systems such that the approximation process diverges. This remains true even with oversampling. However, if more general measurement functionals are considered, a stable approximation is possible if oversampling is used. Further, we show that without oversampling we have divergence for a large class of practically relevant measurement procedures.

Dedicated to Professor Paul Butzer on his 85th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnol’d, V.I.: On the representability of a function of two variables in the form χ[ϕ(x) +ψ(y)]. Uspekhi Mat. Nauk 12(2(74)), 119–121 (1957)

    Google Scholar 

  2. Boas, R.P.: Entire Functions. Academic, New York (1954)

    MATH  Google Scholar 

  3. Boche, H., Mönich, U.J.: Time domain representation of systems on bandlimited signals. In: Proceedings of the 2008 IEEE Information Theory Workshop (ITW’08), pp. 51–55 (2008)

    Google Scholar 

  4. Boche, H., Mönich, U.J.: Sampling-type representations of signals and systems. Sampl. Theory Signal Image Process. 9(1–3), 119–153 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Boche, H., Mönich, U.J.: Sampling of deterministic signals and systems. IEEE Trans. Signal Process. 59(5), 2101–2111 (2011)

    Article  MathSciNet  Google Scholar 

  6. Boche, H., Mönich, U.J.: No-go theorem for sampling-based signal processing. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’14), pp. 56–60 (2014)

    Google Scholar 

  7. Boche, H., Mönich, U.J.: System approximation with general measurement functionals. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’14), pp. 4180–4184 (2014)

    Google Scholar 

  8. Boche, H., Mönich, U.J., Kortke, A., Keusgen, W.: No-go theorem for linear systems on bounded bandlimited signals. IEEE Trans. Signal Process. 58(11), 5639–5654 (2010)

    Article  MathSciNet  Google Scholar 

  9. Butzer, P.L.: The Hausdorff–Young theorems of Fourier analysis and their impact. J. Fourier Anal. Appl. 1(2), 113–130 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Butzer, P.L., Lei, J.: Errors in truncated sampling series with measured sampled values for not-necessarily bandlimited functions. Funct. Approx. Comm. Math. 26, 25–39 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Butzer, P.L., Lei, J.: Approximation of signals using measured sampled values and error analysis. Comm. Appl. Anal. Int. J. Theory Appl. 4(2), 245–255 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Butzer, P.L., Splettstößer, W.: On quantization, truncation and jitter errors in the sampling theorem and its generalizations. Signal Process. 2(2), 101–112 (1980)

    Article  MathSciNet  Google Scholar 

  13. Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahr. der Deut. Math. Ver. 90(1), 1–70 (1988)

    MATH  Google Scholar 

  14. Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34(1), 40–53 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Saitoh, S., Schmeisser, G., Stens, R.L.: Interpolation and sampling: E.T. Whittaker, K. Ogura and their followers. J. Fourier Anal. Appl. 17(2), 320–354 (2011)

    Google Scholar 

  16. Butzer, P.L., Dodson, M.M., Ferreira, P.J.S.G., Higgins, J.R., Lange, O., Seidler, P., Stens, R.L.: Multiplex signal transmission and the development of sampling techniques: the work of Herbert Raabe in contrast to that of Claude Shannon. Appl. Anal. 90(3–4), 643–688 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Butzer, P.L., Schmeisser, G., Stens, R.L.: Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivative—the aliasing error involved by their extensions from bandlimited to non-bandlimited signals. Entropy 14(11), 2192–2226 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ferreira, P.J.S.G.: Nonuniform sampling of nonbandlimited signals. IEEE Signal Process. Lett. 2(5), 89–91 (1995)

    Article  Google Scholar 

  19. Ferreira, P.J.S.G.: Nonlinear systems and exponential eigenfunctions. IEEE Signal Process. Lett. 6(11), 287–289 (1999)

    Article  Google Scholar 

  20. Ferreira, P.J.S.G.: Sorting continuous-time signals: analog median and median-type filters. IEEE Trans. Signal Process. 49(11), 2734–2744 (2001)

    Article  Google Scholar 

  21. Feynman, R.P.: Feynman Lectures on Computation. Penguin Books, Baltimore (1999)

    Google Scholar 

  22. Fine, N.J.: On the Walsh functions. Trans. Am. Math. Soc. 65, 372–414 (1949)

    Article  MATH  Google Scholar 

  23. Franks, L.: Signal Theory. Prentice Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  24. Goldenbaum, M., Boche, H., Stanczak, S.: Harnessing interference for analog function computation in wireless sensor networks. IEEE Trans. Signal Process. 61(20), 4893–4906 (2013)

    Article  MathSciNet  Google Scholar 

  25. Heil, C.: A basis theory primer: expanded edition. In: Applied and Numerical Harmonic Analysis, vol. 1. Birkhäuser, Boston (2011)

    Google Scholar 

  26. Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12(1), 45–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  28. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jerri, A.J.: The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  MATH  Google Scholar 

  30. Kolmogorov, A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114, 953–956 (1957)

    MATH  MathSciNet  Google Scholar 

  31. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  32. Landauer, R.: The physical nature of information. Phys. Lett. A 217(4–5), 188–193 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Levin, B.Y.: Lectures on Entire Functions. AMS, Providence (1996)

    MATH  Google Scholar 

  34. Marvasti, F. (ed.): Nonuniform Sampling: Theory and Practice. Kluwer Academic/Plenum Publishers, New York (2001)

    Google Scholar 

  35. Mönich, U.J.: Reconstruction and processing of bandlimited signals based on their discrete values. Ph.D. thesis, Technische Universität München, Munich, Germany (2011)

    Google Scholar 

  36. Olevskii, A.M.: An orthonormal system and its applications. Mat. Sb. (NS) 71(113), 297–336 (1966)

    Google Scholar 

  37. Olevskii, A.M.: Fourier series of continuous functions with respect to bounded orthonormal systems. Izv. Akad. Nauk SSSR Ser. Mat. 30(2), 387–432 (1966)

    MathSciNet  Google Scholar 

  38. Olevskii, A.M.: Fourier series with respect to general orthogonal systems. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, vol. 86. Springer, New York (1975)

    Google Scholar 

  39. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3 edn. Prentice Hall, Englewood Cliffs (2009)

    Google Scholar 

  40. Partington, J.R.: Recovery of functions by interpolation and sampling. J. Math. Anal. Appl. 198(2), 301–309 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pavlov, B.S.: Basicity of an exponential system and Muckenhoupt’s condition. Dokl. Akad. Nauk SSSR 247(1), 37–40 (1979) [English translation in Sov. Math. Dokl. 20(4), 655–659 (1979)]

    Google Scholar 

  42. Pohl, V., Boche, H.: Advanced topics in system and signal theory: a mathematical approach. In: Foundations in Signal Processing, Communications and Networking, vol. 4. Springer, New York (2009)

    Google Scholar 

  43. Rudin, W.: Real and Complex Analysis, 3 edn. McGraw-Hill, New York (1987)

    Google Scholar 

  44. Schipp, F., Wade, W.R., Simon, P.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol (1990)

    MATH  Google Scholar 

  45. Seip, K.: Developments from nonharmonic Fourier series. Documenta Math. Proc. ICM II, 713–722, Berlin (1998)

    Google Scholar 

  46. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  47. Song, Z., Yang, S., Zhou, X.: Approximation of signals from local averages. Appl. Math. Lett. 19(12), 1414–1420 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Stens, R.L.: A unified approach to sampling theorems for derivatives and Hilbert transforms. Signal Process. 5, 139–151 (1983)

    Article  MathSciNet  Google Scholar 

  49. Sun, W., Zhou, X.: Average sampling in spline subspaces. Appl. Math. Lett. 15(2), 233–237 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sun, W., Zhou, X.: Reconstruction of band-limited signals from local averages. IEEE Trans. Inform. Theory 48(11), 2955–2963 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sun, W., Zhou, X.: Average sampling in shift invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl. 287(1), 279–295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Szarek, S.J.: Nonexistence of Besselian basis in C(S). J. Funct. Anal. 37, 56–67 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  53. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic, New York (2001)

    MATH  Google Scholar 

  54. Zygmund, A.: Trigonometric Series, vol. I, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ingrid Daubechies for valuable discussions of Conjectures 1 and 2 and for pointing out connections to frame theory at the Strobl’11 conference and the “Applied Harmonic Analysis and Sparse Approximation” workshop at the Mathematisches Forschungsinstitut Oberwolfach in 2012. Further, the authors are thankful to Przemysław Wojtaszczyk and Yurii Lyubarskii for valuable discussions of Conjecture 1 at the Strobl’11 conference and Joachim Hagenauer and Sergio Verdú for drawing our attention to [16] and for discussions of related topics. We would also like to thank Mario Goldenbaum for carefully reading the manuscript and providing helpful comments. H. Boche was supported by the German Research Foundation (DFG) under grant BO 1734/13-2. U. Mönich was supported by the German Research Foundation (DFG) under grant MO 2572/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Boche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boche, H., Mönich, U.J. (2014). Signal and System Approximation from General Measurements. In: Zayed, A., Schmeisser, G. (eds) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08801-3_6

Download citation

Publish with us

Policies and ethics