Skip to main content

Approximate Reasoning for an Efficient, Scalable and Simple Thermal Control Enhancement

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

In order to ensure thermal energy efficiency and follow government’s thermal guidance, more flexible and efficient buildings’ thermal controls are required. This paper focuses on proposing scalable, efficient and simple thermal control approach based on imprecise knowledge of buildings’ specificities. Its main principle is a weak data-dependency which ensures the scalability and simplicity of our thermal enhancement approach. For this, an extended thermal qualitative model is proposed. It is based on a qualitative description of influences that actions’ parameters may have on buildings’ thermal performances. Our thermal qualitative model is enriched by collecting and assessing previous thermal control performances. Thus, an approximate reasoning for a smart thermal control becomes effective based on our extended thermal qualitative model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. West, S.R., Ward, J.K., Wall, J.: Trial results from a model predictive control and optimisation system for commercial building HVAC. Energy and Buildings 72, 271–279 (2014)

    Article  Google Scholar 

  2. Castilla, M., Álvarez, J.D., Normey-Rico, J.E., Rodríguez, F.: Thermal comfort control using a non-linear MPC strategy: A real case of study in a bioclimatic building. Journal of Process Control (2013)

    Google Scholar 

  3. Joint Center for Energy Management (JCEM), Final report: Artificial neural networks applied to LoanSTAR data. Technical Report TR/92/15 (1992)

    Google Scholar 

  4. Lei, F., Hu, P.A.: baseline model for office building energy consumption in hot summer and cold winter region. In: Proceedings of Int. Conference on Management and Service Science, vol. 6 (2009)

    Google Scholar 

  5. Kalogirou, S.A.: Artificial neural networks in energy applications in buildings. International Journal of Low-Carbon Technologies 3, 201–216 (2006)

    Article  Google Scholar 

  6. Li, Q., Meng, Q.L., Cai, J.J., Hiroshi, Y., Akashi, M.: Applying support vector machine to predict hourly cooling load in the building. Applied Energy 86(10), 2249–2256 (2009)

    Article  Google Scholar 

  7. Signh, J., Signh, N., Sharma, J.: Fuzzy modelling and control of HVAC systems - a review. Journal of scientific and Industrial Research 65, 470–476 (2006)

    Google Scholar 

  8. Williams, B.C.: Temporal qualitative analysis: explaining how physical systems work. In: Qualitative Reasoning about Physical Systems, pp. 133–177. Morgan Kauffmann Publishers (1989)

    Google Scholar 

  9. Kuipers, B.: Qualitative simulation. Artificial Intelligence 29, 289–388 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dubois, D.: Order of magnitude reasoning with fuzzy relations. Artificial Intelligence 3(14), 69–94 (1989)

    Google Scholar 

  11. MQ&D coordinated by Dague, P.: Qualitative Reasoning: a survey of techniques and applications. AI Communications The European Journal of AI 8, 119–192 (1995)

    Google Scholar 

  12. Denguir, A., Trousset, F., Montmain, J.: Comfort as a Multidimensional Preference Model for Energy Efficiency Control Issues. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 486–499. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Denguir, A., Trousset, F., Montmain, J.: Research for IT Driven Energy Efficiency Based on a Multidimensional Comfort Control. In: DEXA/ICT-GLOW, pp. 18–32 (2012)

    Google Scholar 

  14. Montmain, J., Gentil, S.: Qualitative Event Analysis for Fault Diagnosis. In: IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, Safeprocess 1991, Baden-Baden, Allemagne (1991)

    Google Scholar 

  15. NF EN ISO 7730. Ergonomie des ambiances thermiques: Détermination analytique et interprétation du confort thermique à l’aide de calculs des indices PMV et PPD et du confort thermique local. AFNOR (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Denguir, A., Trousset, F., Montmain, J. (2014). Approximate Reasoning for an Efficient, Scalable and Simple Thermal Control Enhancement. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-08795-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08795-5_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08794-8

  • Online ISBN: 978-3-319-08795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics