Skip to main content

Efficient and Scalable Nonlinear Multiple Kernel Aggregation Using the Choquet Integral

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

Previously, we investigated the definition and applicability of the fuzzy integral (FI) for nonlinear multiple kernel (MK) aggregation in pattern recognition. Kernel theory provides an elegant way to map multi-source heterogeneous data into a combined homogeneous (implicit) space in which aggregation can be carried out. The focus of our initial work was the Choquet FI, a per-matrix sorting based on the quality of a base learner and learning was restricted to the Sugeno λ-fuzzy measure (FM). Herein, we investigate what representations of FMs and FIs are valid and ideal for nonlinear MK aggregation. We also discuss the benefit of our approach over the linear convex sum MK formulation in machine learning. Furthermore, we study the Möbius transform and k-additive integral for scalable MK learning (MKL). Last, we discuss an extension to our genetic algorithm (GA) based MKL algorithm, called FIGA, with respect to a combination of multiple light weight FMs and FIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.T., Stone, K., Keller, J.M., Spain, C.: Combination of Anomaly Algorithms and Image Features for Explosive Hazard Detection in Forward Looking Infrared Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1), 313–323 (2012)

    Article  Google Scholar 

  2. Havens, T.C., Keller, J.M., Stone, K., Anderson, D.T., Ho, K.C., Ton, T.T., Wong, D.C., Soumekh, M.: Multiple kernel learning for explosive hazards detection in forward-looking ground-penetrating radar. SPIE Defense, Security, and Sensing (2012), http://dx.doi.org/10.1117/12.920482

  3. Hu, L., Anderson, D.T., Havens, T.C.: Fuzzy Integral for Multiple Kernel Aggregation. In: IEEE International Conference on Fuzzy Systems (2013)

    Google Scholar 

  4. Grabisch, M., Nguyen, E., Walker, E.: Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer Academic, Dordrecht (1995)

    Book  Google Scholar 

  5. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy measures and integrals: theory and applications. STUDFUZZ. Physica-Verlag (2000)

    Google Scholar 

  6. Tahani, H., Keller, J.: Information fusion in computer vision using the fuzzy integral. IEEE Trans. on Systems, Man, and Cyber. 20, 733–741 (1990)

    Article  Google Scholar 

  7. Anderson, D.T., Havens, T.C., Wagner, C., Keller, J.M., Anderson, M., Wescott, D.: Extension of the Fuzzy Integral for General Fuzzy Set-Valued Information. IEEE Trans. on Fuzzy Systems (2014), doi:10.1109/TFUZZ.2014.2302479

    Google Scholar 

  8. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. 4OR: A Quarterly Journal of Operations Research 6, 1–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sugeno, M.: Theory of fuzzy integrals and its application, Ph.D. thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  10. Mendez-Vazquez, A., Gader, P.D.: Learning Fuzzy Measure Parameters by Logistic LASSO. In: Proceedings of the North American Fuzzy Information Processing Society Meeng, NAFIPS, New York, NY, pp. 1–7 (2008)

    Google Scholar 

  11. Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92, 167–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2001)

    Google Scholar 

  13. Gonen, M., Alpaydin, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)

    MathSciNet  Google Scholar 

  14. Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.: Simple and Efficient Multiple Kernel Learning by Group Lasso. In: Int’l Conference on Machine Learning (2010)

    Google Scholar 

  15. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning conic duality, and the SMO algorithm. In: Int’l Conference on Machine Learning, pp. 41–48 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, L., Anderson, D.T., Havens, T.C., Keller, J.M. (2014). Efficient and Scalable Nonlinear Multiple Kernel Aggregation Using the Choquet Integral. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-08795-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08795-5_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08794-8

  • Online ISBN: 978-3-319-08795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics