Skip to main content

An Interval Programming Approach for an Operational Transportation Planning Problem

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

This paper deals with an interval programming approach for an operational transportation problem, arising in a typical agricultural cooperative during the crop harvest time. More specifically, an interval programming model with uncertain coefficients occurred in the right-hand side and the objective function is developed for a single-period multi-trip planning of a heterogeneous fleet of vehicles, while satisfying the stochastic seed storage requests, represented as interval numbers. The proposed single-period interval programming model is conceived and implemented for a real life agricultural cooperative case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research 197(2), 427–438 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahumada, O., Villalobos, J.: Application of planning models in the agri-food s upply chain: A review. European Journal of Operational Research 196(1), 1–20 (2009)

    Article  MATH  Google Scholar 

  3. Averbakh, I.: Computing and minimizing the relative regret in combinatorial optimization with interval data. Discrete Optimization 2(4), 273–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: A discrete event simulation model for harvest operations under stochastic conditions. In: ICNSC 2013, pp. 708–713 (2013)

    Google Scholar 

  6. Cao, M., Huang, G., He, L.: An approach to interval programming problems with left-hand-side stochastic coefficients: An application to environmental decisions analysis. Expert Systems with Applications 38(9), 11538–11546 (2011)

    Article  Google Scholar 

  7. Dai, C., Li, Y., Huang, G.: An interval-parameter chance-constrained dynamic programming approach for capacity planning under uncertainty. Resources, Conservation and Recycling 62, 37–50 (2012)

    Article  Google Scholar 

  8. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Bounds for probabilistic integer programming problems. Discrete Applied Mathematics, 55–65 (October 2002)

    Google Scholar 

  9. Gabrel, V., Murat, C., Remli, N.: Linear programming with interval right hand sides. International Transactions in Operational Research 17(3), 397–408 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Inuiguchi, M., Sakawa, M.: Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research 86(3), 526–536 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kacprzyk, J., Esogbue, A.: Fuzzy dynamic programming: Main developments and applications. Fuzzy Sets and Systems 81(1), 31–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kall, P., Wallace, S.N.: Stochastic Programming. John Wiley and Sons (1994)

    Google Scholar 

  13. Kasperski, A., Zielińki, P.: Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights. European Journal of Operational Research 200(3), 680–687 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. List, G., Wood, B., Nozick, L., Turnquist, M., Jones, D., Kjeldgaard, E., Lawton, C.: Robust optimization for fleet planning under uncertainty. Transportation Research Part E: Logistics and Transportation Review 39(3), 209–227 (2003)

    Article  Google Scholar 

  15. Liu, B.: Dependent-chance programming: A class of stochastic optimization. Computers & Mathematics with Applications 34(12), 89–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, B., Iwamura, K.: Modelling stochastic decision systems using dependent-chance programming. European Journal of Operational Research 101(1), 193–203 (1997)

    Article  MATH  Google Scholar 

  17. Luo, J., Li, W.: Strong optimal solutions of interval linear programming. Linear Algebra and its Applications 439(8), 2479–2493 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Miller, L., Wagner, H.: Chance-constrained programming with joint constraints. Operational Research, 930–945 (1965)

    Google Scholar 

  19. Chinneck, J.W., Ramadan, K.: Linear programming with interval coefficients. The Journal of the Operational Research, 209–220 (2000)

    Google Scholar 

  20. Ruszczyński, A., Shapiro, A.: Stochastic programming models. Handbooks in Operations Research and Management Science, pp. 1–64. Elsevier (2003)

    Google Scholar 

  21. Sengupta, A., Pal, T., Chakraborty, D.: Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems 119(1), 129–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shapiro, A., Dentcheva, D.: Lectures on stochastic programming: Modelling and Theory. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  Google Scholar 

  23. Sheu, J.-B.: A novel dynamic resource allocation model for demand-responsive city logistics distribution operations. Transportation Research Part E: Logistics and Transportation Review 42(6), 445–472 (2006)

    Article  Google Scholar 

  24. Moore, R.E.: Automatic Error Analysis in Digital Computation. Sunnyvale, Calif. (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N. (2014). An Interval Programming Approach for an Operational Transportation Planning Problem. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-08795-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08795-5_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08794-8

  • Online ISBN: 978-3-319-08795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics